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Abstract: When working with real-world datasets characterized by complex 

and non-linear relationships, the limitations of non-complex machine learning 

models like linear regression become evident. In response to addressing this 

technical problem, we propose a novel algorithm to enhance linear regression 

without the necessity of complex mathematical or statistical expressions. 

Instead, the algorithm segments data into multiple subgroups or neighbors, each 

with its best-fitting line. The primary objective of this approach is to enable more 

accurate predictions for unseen data points by utilizing the most similar 

neighbors and their corresponding linear regression lines, with the support of k-

nearest neighbors. Empirical evidence from three publicly available housing 

price datasets demonstrates the algorithm’s effectiveness in improving 

traditional linear regression models.  

Keywords: Linear modeling; machine learning; K-nearest neighbor; boosting algorithm 

1. Introduction 

In today’s era of precise and rapid advancements in computational 

capabilities, various advanced machine learning techniques, like modified 

gradient boosting trees and deep learning, have emerged to improve model 

performance significantly [1, 2]. These sophisticated methods can model complex 

non-linear relationships in data and accommodate various data types such as 

images and text [3, 4]. With growing research, these techniques have led to 

predictive modeling across finance, healthcare, and marketing domains. 

Nonetheless, amidst the ongoing global warming crisis, it is recommended that 

complex models like deep learning be used only for essential purposes as they 

consume a lot of energy. This results in significant carbon dioxide emissions. For 

instance, it is found that training the bidirectional encoder representations from 

the transformers language model (BERT LM), an advanced deep learning model, 

can emit as much carbon dioxide as a year’s home energy consumption [5]. This 

suggests that complex models should be used only when necessary.  

In contrast to complex models, linear regression is a simple machine 

learning method that models the relationship between dependent variables and 

one or more independent variables by fitting a linear equation to observed data. 

While linear regression may not effectively handle data with non-linear 

relationships like deep learning, its role in data science persists. It remains a 

fundamental and indispensable method in statistics, data analysis, and financial 

engineering [6]. Its enduring importance lies in simplicity and interpretability. 

Since linear regression offers rapid implementation, requiring minimal computational 
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resources and enabling swift model development compared to complex architectures of deep learning models, 

employing linear regression could extend global efforts to mitigate the threat of the global warming crisis.  

Also, due to its simplicity, individuals can easily understand and use linear regression, even with limited 

knowledge of machine learning. Moreover, linear regression demonstrates superiority when the relationships 

between variables are primarily linear. This is an example of a scenario where deep learning models cannot 

rival its performance. Yet, in data analysis, it becomes evident that many real-world datasets exhibit complex 

and non-linear relationships. For example, stock price data over time do not follow a straight line [7]. When 

we face such intricate data, it becomes essential to acknowledge the limitations of linear regression, as it may 

not be the most suitable approach. Nonetheless, rather than discarding linear regression, an attempt to 

enhance its capabilities to deal with data exhibiting non-linear patterns is intriguing. The success of this 

approach could eliminate the need for employing deep learning unless it is genuinely essential. 

To date, numerous studies have sought to enhance regression models. The first approach belongs to 

a class of feature engineering intending to make the data more suitable and informative. This enables the 

model to learn patterns and make more precise predictions. The works in [8-10] are examples of this approach. 

However, feature engineering demands domain knowledge and a significant amount of time since we must 

carefully analyze the relationships between input features and target variables. This task can become 

challenging, especially when dealing with large input feature sets. The second approach is the so-called 

regularization. This technique adds a penalty term to the model’s loss function [11-14]. The last approach 

introduces non-linearity to linear regression, such as using basis functions [15] and certain classes of statistical 

models like generalized linear models (GLMs) [16]. Unfortunately, the drawbacks of the latter two are that a 

solid knowledge of mathematics and statistics and coding skills are highly required. This complexity is further 

compounded when using standard platforms like scikit-learn in Python [17], as modifying the library’s code 

as suggested by the mentioned papers might be nontrivial. Of course, these techniques may not suit every 

artificial intelligence (AI) developer, especially beginners. 

Therefore, this research aims to develop a novel, user-friendly algorithm that can enhance the 

performance of linear regression models without involving the intricacies of daunting mathematical 

expressions, which might pose challenges to certain AI developers. Instead, we achieve this by incorporating 

a simple model like K-nearest neighbor (KNN) into our proposed algorithm.  The algorithm’s implementation 

is also designed to be straightforward, ensuring accessibility even for individuals not well-versed in coding. 

Three housing price datasets in [18-20] have been selected to assess the proposed algorithm's effectiveness. 

The choice of housing price data is due to its significance in various aspects. The first obvious reason is that 

they are standard and popular datasets for regression tasks. Apart from the technical reason, housing prices 

substantially impact the economy, as the real estate market plays a vital role in driving economic growth and 

stability [21]. In terms of modeling, some studies in [22-26] have attempted to construct machine learning 

models for housing price prediction. However, these studies relied on various common machine learning tools 

such as exploratory data analysis, linear regression, artificial neural networks, support vector machines, and 

gradient boosting trees, and none of them introduced novel methodologies. 

2. Background 
 We commence by offering a concise overview of K-Nearest Neighbors (KNN), linear regression, and 

principal component analysis (PCA), as these methodologies will be subsequently applied in this research. 

2.1 K-Nearest Neighbors (KNN) 

 K-nearest neighbors (KNN) is a straightforward and instinctive machine learning technique in 

classification and regression tasks. It is categorized within the class of instance-based, non-parametric 

approaches. The central idea behind KNN is that data points with similar features tend to belong to the same 

class or exhibit similar behaviors [15]. To determine similarity, in this study, we use the so-called Euclidean 

norm or 𝐿2-norm defined as follows: 

 

‖𝒙 − 𝒚‖2 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1         (1) 
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where 𝒙 = (𝑥1, … , 𝑥𝑛), 𝒚 = (𝑦1, … , 𝑦𝑛) ∈ ℝ𝑛. Intuitively, the closer two vectors are, the smaller their 𝐿2-norm is. 

Hence, the predictive outcome for classification tasks is the class label, determined by selecting the most 

frequently occurring class among the K nearest neighbors. To clearly understand how KNN works, Figure 1 

demonstrates how the K-Nearest Neighbors (KNN) algorithm classifies a new data point (the red cross). If K 

is set to be 3, the three nearest neighbors (inside the smaller dashed circle) include 2 green squares and 1 pink 

triangle, resulting in a prediction of a green square due to the majority. However, if K = 7, the seven nearest 

neighbors (inside the larger dashed circle) include 3 green squares and 4 pink triangles, leading to a prediction 

of a pink triangle instead. It can be noted that the value of the hyperparameter K plays a crucial role in 

determining the classification outcome by considering different sets of nearest neighbors. To find an optimal 

value of K, we can test various K values and choose the one that provides the best performance on a test set. 

 

 
 

Figure 1. The illustration of how the K-Nearest Neighbors (KNN) algorithm works to classify new data point,  

   represented by the red cross, with K = 3 and 7. 

 

2.2 Linear Regression 

 Let 𝑿 be an input matrix in ℝ𝑛×𝑑 and 𝒚 a target vector in ℝ𝑛. Linear regression aims to find a vector 

of parameters 𝒘 in ℝ𝑑 such that ‖𝑿𝒘 − 𝒚‖2
2 is minimized as much as possible. It is well-known that the solution 

to this optimization problem is 𝒘 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 [27]. Note that since 𝒘 is a result of matrix multiplication, it 

becomes clear that linear regression might exhibit poor performance in cases where the underlying pattern is 

not linear. 

 

2.3 Principal Component Analysis (PCA) 

 PCA is a dimensionality reduction technique used in data analysis and machine learning to transform 

a dataset into a new coordinate system, where the data’s variance is maximized along the new axes. For 

example, if the original data has 200 input features, PCA can transform the dataset to reduce the number of 

features to any desired amount, such as 50. Moreover, with PCA, we can ensure that the new dataset with 50 

input features effectively represents the original dataset.  

 PCA identifies the principal components (linear combinations of the original features) that capture the 

most significant variation in the data. These principal components are ordered by importance, allowing for 

the retention of the most informative components while reducing the dimensionality of the dataset. The 

algorithm for dimensionality reduction using PCA is as follows [15]:  
 

Input Variables: 

• 𝐗: Original standardized data matrix with dimensions 𝑚 ×  𝑛 (where 𝑚 is the number of samples and     

     𝑛 is the number of features). 

• 𝑘: Desired number of principal components, i.e., the number of features of the newly transformed data. 
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PCA Algorithm: 

1. Calculate the covariance matrix (𝚺) of 𝐗. 

𝚺 ∶=  
1

𝑚
𝐗T𝐗 

 

Decompose 𝚺 using eigen-decomposition as a product of an orthogonal matrix 𝐕 whose columns are 

the real-orthonormal eigenvectors of 𝚺, and a diagonal matrix 𝚲 whose entries are all the eigenvalues of 𝚺.  

 

𝚺 = 𝐕𝚲𝐕T  

 

2. Sort the eigenvalues in 𝚲 in descending order and rearrange the eigenvectors in 𝐕 accordingly (if 

necessary).    

3. Choose the top 𝑘 eigenvectors corresponding to the largest 𝑘 eigenvalues to form the matrix of 

principal components. 

 
𝐕𝑘 = 𝐕[: , 1: 𝑘] 

 

where 𝐕[: , 1: 𝑘] refers to the selection of the first 𝑘 columns from the matrix 𝐕. 

 

4.  The output (transformed) data is given by 𝐗𝐕𝑘, which is a matrix of dimension 𝑚 ×  𝑘. 

 

PCA is generally admitted as a valuable tool for simplifying complex data, visualizing patterns, and removing 

multicollinearity in feature sets, making it a fundamental technique in data preprocessing and exploratory 

data analysis. In this study, PCA is an optional tool that is not integrated into any part of the proposed 

algorithm. Instead, we only employ it as a tool for data preprocessing to reduce the dimensionality of data to 

avoid prolonged computational processing.  

3. Motivation and Methods 

Before presenting the pseudocode algorithm of our proposed method, let us first delve into the idea 

behind it. 

3.1 Motivation 

 

  

Figure 2. Scatter plot of 200 data points (red) with errors deviating from the equation 𝑦 = √17𝑥 + 3.7 + 17 

(dark red) and the regression line (green). 

 

 
     data 

         Linear Regression Line 

         Original Function 𝑦 = √17𝑥 + 3.7 + 17 
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In Figure 2, we simulate a scenario where the true model represents the relationship between the x-

axis and y-axis through the equation 𝑦 = √17𝑥 + 3.7 + 17. After that, the 200 data points generated from the 

equation but with added noise or errors represent the data we collected. We also plot the linear regression line 

(in green) fitted from this data. Notably, the linear regression model did not perform well in this case, clearly 

due to the underlying non-linear pattern presented in the data.  
 

 

Figure 3. Round-1 linear regression line (black) fitted from the filtered data points (grey dots). 
 

However, from Figure 3, if we pick only data points where the error between the predicted value and 

the actual value is less than the 70th percentile of the error observed in the entire dataset (in grey), the very 

linear regression line called round-1 linear regression line (in black), perform better with this filtered data. 

 
Figure 4. Round-2 and round-3 linear regression lines fitted from the corresponding filtered data points.  

 

Next, we iterate the above step and yield the round-2 linear regression line (depicted in blue in Figure 

4). It is obtained by fitting the remaining data in Figure 3, and subsequently, we select only the best-fitted data 

points (shown in cyan), as illustrated in Figure 4. We then repeat this process for one more round, yielding the 

round-3 linear regression line (in purple) and its corresponding data (in violet). Of course, this process will 

continue until all the data has been accounted for. Every data point has been assigned to an appropriate 

subgroup or neighbor and its corresponding linear regression line. At the end of this process, all the data is 

categorized into multiple neighbors, each with its own well-predicted linear regression line. When predicting 

the value of an unseen data point, we first determine which neighbor the new data point best fits through the 

k-nearest neighbor (KNN) model. Then, we employ that neighbor's corresponding linear regression line to 

receive the prediction. For example, suppose that the KNN model identifies a new data point resembling the 
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cyan neighbor’s pattern. Then, we utilize the blue linear regression line to forecast the expected outcome of 

this unseen data. The above approach would make more accurate predictions based on the characteristics of 

similar data points within the same neighborhood. These concepts form the foundation of the algorithm 

proposed by this research, as shown in Table 1.  

Table 1. The proposed algorithm 
 

 

Pseudocode  
 

 

 

Input  

 

 

iter the number of iterations to obtain multiple neighbors of data and their corresponding 

linear regression lines 

n_perc the nth percentile in the dataset 

num_knn the number of nearest neighbors to use for k-nearest neighbors (KNN) model  

X_train training data  

y_train target variable of the training data   

X_test test data  
 

 

 

Output  

 

 

X1,…,Xiter a sequence of neighbors of the data in each iteration  

 

l_reg1,…,l_regiter a sequence of the linear regression models corresponding to the neighbors of the data  

 

y_pred the predicted values from X_test by the proposed algorithm  

 

 

 

Step 1: Find all the neighbors and build their corresponding linear regression models. 
 

 

 

 

 

 

X = X_train 

y = y_train 

for i = 1 to iter : 

      l_reg.fit(X, y) 

      pred  =  l_reg.predict(X) 

     dist  =  |pred - y| 

     threshold_dist =  n_perc in dist data 

     if i ≠ iter :  

          Xi = X  whose  dist  <  threshold_dist 

          l_regi = l_reg 

         X = X not containing Xi 

               y = y which corresponds to X 

     else: 

         Xi = X  

         l_regi = l_reg  

 

 

 

 

 

 

 

Step 2: Predict the target values.  

 

 

 

 

# Determine the neighbor to which each data point in X_train belongs. 
 

 

 

y_knn = [ i  for x in X_train  if x belongs to Xi ]) 

 

# Build a KNN model 
KNN.fit(X_train, y_knn, n_neighbors = num_knn) 

 

# Forecast the outcome values 
 

for  xj  in  X_test : 

        neighbor =  KNN.predict(xj)      # To get the neighbor to which xj belongs   

        y_predj = l_regneighbor.predict(xj)    # Use the corresponding linear regression of neighbor to forecast   
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 Table 1 shows three parameters for the algorithm: iter, n_perc, and num_knn. To find the optimal value 

for each parameter, we can experiment with various combinations of their settings to find the most effective 

one. This process is commonly referred to as “grid search.” Iter aims to set the number of iterations required 

to obtain multiple neighbors of the data and their corresponding linear regression lines. N_perc removes data 

points that poorly fit the linear regression line. As for the last parameter, num_knn acts as a hyperparameter 

for the KNN model. Recall that KNN allows us to identify the most suitable neighbor to which any unseen 

data point belongs and then determine the linear regression line for prediction. 

 While KNN is integrated, this does not introduce additional complexity to the proposed algorithm. It 

can be noted that each line of code presented in Table 1 is just a routine command typically employed by data 

scientists. Furthermore, no modifications to the existing library code are required. All of these are to ensure 

that the implementation remains trouble-free for users. 

 Before applying the proposed algorithm to the datasets, it is vital to mention that Figure 4 serves only 

the purpose of visualizing how the algorithm works, even though concerns about overfitting might exist. 

However, this concern may not be as significant when dealing with real-world data because the simulated 

data in Figure 4 has only a quadratic pattern, less complex than any actual data. Also, linear regression is not 

a complex model. In particular, the overfitting issue is problematic because the model cannot accurately 

predict unseen data. Hence, if our algorithm can produce a model with better performance than the baseline 

model, it is legitimate to say the proposed algorithm is successful. 

  

3.2 Methods  

 Now, we will employ the proposed algorithm to the three selected datasets. The process involves the 

following steps. For simplicity in evaluating the effectiveness of the proposed algorithm, some conventional 

steps like exploratory data analysis, data imputation to fill missing values, feature selection, and feature 

engineering will be omitted.  

 

 3.2.1 Data Preparation  

 The three datasets: house prices [18], California housing prices [19], and Boston house prices [20], 

underwent conventional techniques like dropping features with many missing values and removing rows 

containing missing values. All the categorical features were transformed using one-hot encoding (if necessary). 

Furthermore, in the case of the first dataset, the PCA algorithm in section 2.3 was applied due to its large 

number of input features (297) resulting from one-hot encoding. Setting the number of principal components 

to 150, the PCA-transformed data will have only 150 input features. Table 2 presents an overview of the 

preprocessing steps performed on each dataset during this phase. 

 

Table 2. Summary of data characteristics and data preprocessing steps of the three datasets. 

Item House Prices California Housing Prices Boston House Prices 

Size of raw data 1,094×76 20,433×10 506×14 

Dropping 

column 

 

 

Alley, PoolQC, MiscFeature, 

FireplaceQu, and Fence 
 

 

 

None None 

Number of 

categorical 

features 

42 1 0 

 

PCA 

 

 

 

Yes 

(150 principal components) 
 

 

No No 

Number of input 

features 
 

 

150 13 13 
 

 

Target feature  

 

 

 

SalePrice median_house_value MEDV 
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3.2.2 Train-test Split 

 Each dataset is split into training and test sets with a ratio of 67:33. The target feature for each dataset 

is shown in the final row of Table 2. This means we have X_train, X_test, y_train, and y_test for each housing dataset.  

  

 3.2.3 Model Training and Prediction 

 The proposed algorithm fits the input features (X_train) and the output feature (y_train) of the training 

dataset for each of the three datasets. However, since the proposed algorithm comprises three 

hyperparameters, iter, n_perc, and num_knn, different combinations of these values can yield various models 

with varying performance levels. Consequently, the optimal combination of these hyperparameter values is 

crucial. In this paper, to obtain the best parameter configuration for the algorithm, we loop through all the 

combinations of the following settings : 

• iter  ∈ {1, 2, 3 ,4, 5, 6, 7, 8}, 

• n_perc  ∈ {0.3,  0.5,  0.7, 0.75}, 

• num_knn  ∈ {1, 3, 17, 31, 59, 93}. 

In more detail, we exhaustively tried all the 8×4×6 = 192 possible combinations from the given set of each 

hyperparameter to build 192 regression models and then predict the target values (y_pred) from the test 

datasets of the three housing datasets.  

 It is worth mentioning that the range or values of each hyperparameter can be set arbitrarily. The 

broader the ranges we specify, the higher the chance of finding more optimal parameters; however, this will 

require more time. This process involves a trade-off between the thoroughness of the search and the time 

required to perform it. While there is no guarantee of finding the absolute optimal solution, this approach 

ensures we identify the most optimal combination within the given set of hyperparameters. 

 

 3.2.4 Model Evaluation 

 Following the generation of 192 sets of predicted values (y_pred) of each housing dataset from the 

previous step, we compute several standard regression evaluation metrics using the y_pred values and the 

y_test values from subsection 3.2.2. These metrics will select the best model among the 192 models. The 

evaluation metrics include root mean square error (RMSE), R²-score, mean absolute percentage error (MAPE), 

and mean absolute error (MAE), as follows: 

 

RMSE =  √
∑ (𝑦𝑖−𝑦𝑖̃)2 𝑛

𝑖=1

𝑛
         (2)    

   
 

               R2 = 1 −  
∑ (𝑦𝑖−𝑦𝑖̃)2 𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2 𝑛
𝑖=1

       (3)    

 
 

 

        MAPE =  
1

𝑛
∑ |

𝑦𝑖−𝑦𝑖̃

𝑦𝑖
|𝑛

𝑖=1 × 100     (4) 

 
                                                                                                                                                                                                                       

 

                                                                                                                       MAE =  
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̃|

𝑛
𝑖=1        (5) 

 
where 𝑦𝑖  is the ith actual output value (the ith value of y_test), 𝑦𝑖̃ is the ith predicted value (the ith value of 

y_pred ), 𝑦̅ is the average of the actual output values, and 𝑛 is the number of rows of the test set. Note that the 

four metrics share the common goal of measuring how well a model’s predictions align with the actual 

observed values, although their formulae are different, and the best model is the one with the highest R²-score 

and the lowest RMSE, MAPE, and MAE. 
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4. Results and Discussion  
 The most optimal parameter configurations for iter, n_perc, and num_knn across the three selected 

housing price datasets, along with the corresponding values of the four evaluation metrics for regression, are 

shown in Table 3. The evaluation metrics obtained from the traditional (baseline) linear regression models to 

assess the effectiveness of the proposed algorithm are also provided in this table. 
 

Table 3. Best parameter configurations and the four evaluation metrics across the three datasets. 

 

Table 4. Percentage change in the evaluation metric values for the proposed models compared to the baseline 

models across the different datasets. 

 

Among the three datasets, the Boston housing dataset shows the most robust linear pattern, with the 

highest R2-score from the baseline model. In contrast, the House prices dataset displays the weakest linear 

pattern. To see a clear comparison, we present Table 4, visually represented by Figure 5. The table provides 

the percentage changes in the four performance metrics for the proposed models compared to the baseline 

models across the three housing price datasets. Note that when it comes to RMSE, MAPE, and MAE, negative 

percentages show enhancements in performance, whereas positive ones indicate deteriorations. Yet, this 

Item House Prices California Housing Price Boston House Prices 
 

Best of 

(iter, n_perc, num_knn)  

 

 

(3, 0.75, 17) (5, 0.3, 59) (6, 0.5, 1) 

RMSE 

 

 

Baseline 

 

 

 

 

 

51,186.151 
 

 

66,572.595 
 

 

4.907 
 

 

Proposed 
 

 

 

 

 

47,448.611 
 

 

65,484.518 
 

 

4.260 

R2 

 

 

Baseline 
 

 

 

 

 

0.535 
 

 

0.665 
 

 

0.747 
 

 

Proposed 
 

 

 

 

 

0.601 
 

 

0.676 
 

 

0.809 

MAPE 

 

 

Baseline 
 

 

 

 

 

0.155 
 

 

0.280 
 

 

0.189 
 

 

Proposed 

 

 

 

 

 

0.139 
 

 

0.274 
 

 

0.162 

MAE 

 

 

Baseline 
 

 

 

 

 

24,534.293 
 

 

48,767.613 
 

 

3.671 
 

 

Proposed 
 

 

 

 

 

22,408.018 
 

 

47,832.910 
 

 

3.094 

Dataset Metric Percentage Change (%) 
 

House Prices 

 

RMSE 

 

-7.302 
 

R2
 

 

12.336 
 

MAPE 

 

-10.323 
 

MAE 

 

-8.667 

California Housing Prices 

 

RMSE 

 

-1.634 
 

 

R2
 

 

1.654 
 

MAPE 

 

-2.143 
 

MAE 

 

-1.917 

Boston House Prices 

 

RMSE 

 

-13.185 
 

R2
 

 

8.300 
 

MAPE 

 

-14.286 
 

MAE 

 

-15.718 
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situation becomes otherwise for R2. This means that the proposed algorithm empirically enhances the 

performance of the traditional models. 

Specifically, according to Figure 5, it is evident that the proposed algorithm significantly enhances the 

performance of the traditional linear regression model, achieving the best results in the case of the Boston 

house prices dataset, while the improvement is the least pronounced in the California housing price dataset. 

Furthermore, regardless of the underlying data pattern, the proposed model can effectively augment or 

replace the traditional linear regression model. This is evidenced by the substantial percentage changes in the 

evaluation metrics for the house prices dataset, which rarely exhibits a linear underlying pattern. 

 

 

 

 

 

 

 

Figure 5. Percentage changes in evaluation metric values. 

 Examining the most challenging dataset for the proposed algorithm, the California housing price 

dataset, our initial observation reveals a small degree of linearity through an R2-score of 0.665 from the baseline 

model. This first indicates a more complex underlying pattern on this dataset. Also, the optimal value of 

num_knn is extremely high, up to 59, reflecting that many data points are proximate. These issues lead to 

difficulty partitioning data into multiple neighbors and constructing best-fitting linear regression lines. 

Consequently, the proposed algorithm demonstrates its lowest effectiveness on this dataset. These findings 

show that this dataset would be better suited for advanced models like gradient-boosted trees or deep 

learning, even though the proposed algorithm can be deployed to enhance performance with modest 

improvements. From the results, it is evident that the proposed algorithm can significantly enhance linear 

regression. This improvement is particularly beneficial for fields that highly rely on linear regression, such as 

the Capital Asset Pricing Model (CAPM) in finance [6], or those who value linear regression's simplicity and 

interpretability. Yet, in some practical applications where precision is critical, it is advisable to consider other 

advanced regression models—such as support vector machines, gradient boosting trees, neural networks, and 

the proposed algorithm—to ensure that the most accurate and practical model is selected for real-world scenarios. 

 

5. Conclusions  

The study thoroughly evaluated the algorithmic approach to address the technical problem of linear 

regression’s limitations when applied to non-linear data using three distinct housing price datasets: House 

Prices, California Housing Prices, and Boston House Prices. The results demonstrate that the proposed 

algorithm significantly improves the performance of the traditional linear regression model by decreasing 

RMSE, MAPE, and MAE metrics while increasing the R2 score across all the datasets. The success of our 

proposed algorithm would be due to its capacity to break down complex datasets into smaller and manageable 

neighbors and then construct individual linear regression models for each of them. This approach allows us 

to capture finer patterns and relationships within the data, resulting in more accurate predictions with the 

support of KNN. The utility of applying the proposed algorithm improves the performance of linear 

regression models with a mathematically effortless approach. Still, it also contributes to the model selection 
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process by indicating the suitability of inviting more complex models like deep learning in appropriate 

scenarios. Moreover, AI developers could gain advantages from the proposed algorithm by freely substituting 

their preferred model for linear regression. This might be another approach to enhance the performance of 

any existing reliable models. 
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