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Abstract: When working with real-world datasets characterized by complex
and non-linear relationships, the limitations of non-complex machine learning

models like linear regression become evident. In response to addressing this
technical problem, we propose a novel algorithm to enhance linear regression
without the necessity of complex mathematical or statistical expressions.
Instead, the algorithm segments data into multiple subgroups or neighbors, each
with its best-fitting line. The primary objective of this approach is to enable more
accurate predictions for unseen data points by utilizing the most similar
neighbors and their corresponding linear regression lines, with the support of k-
nearest neighbors. Empirical evidence from three publicly available housing
price datasets demonstrates the algorithm’s effectiveness in improving
traditional linear regression models.

Keywords: Linear modeling; machine learning; K-nearest neighbor; boosting algorithm

1. Introduction

In today’s era of precise and rapid advancements in computational
capabilities, various advanced machine learning techniques, like modified
gradient boosting trees and deep learning, have emerged to improve model
performance significantly [1, 2]. These sophisticated methods can model complex
non-linear relationships in data and accommodate various data types such as
images and text [3, 4]. With growing research, these techniques have led to
predictive modeling across finance, healthcare, and marketing domains.
Nonetheless, amidst the ongoing global warming crisis, it is recommended that
complex models like deep learning be used only for essential purposes as they
consume a lot of energy. This results in significant carbon dioxide emissions. For
instance, it is found that training the bidirectional encoder representations from
the transformers language model (BERT LM), an advanced deep learning model,
can emit as much carbon dioxide as a year’s home energy consumption [5]. This
suggests that complex models should be used only when necessary.

In contrast to complex models, linear regression is a simple machine
learning method that models the relationship between dependent variables and
one or more independent variables by fitting a linear equation to observed data.
While linear regression may not effectively handle data with non-linear
relationships like deep learning, its role in data science persists. It remains a
fundamental and indispensable method in statistics, data analysis, and financial
engineering [6]. Its enduring importance lies in simplicity and interpretability.
Since linear regression offers rapid implementation, requiring minimal computational
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resources and enabling swift model development compared to complex architectures of deep learning models,
employing linear regression could extend global efforts to mitigate the threat of the global warming crisis.
Also, due to its simplicity, individuals can easily understand and use linear regression, even with limited
knowledge of machine learning. Moreover, linear regression demonstrates superiority when the relationships
between variables are primarily linear. This is an example of a scenario where deep learning models cannot
rival its performance. Yet, in data analysis, it becomes evident that many real-world datasets exhibit complex
and non-linear relationships. For example, stock price data over time do not follow a straight line [7]. When
we face such intricate data, it becomes essential to acknowledge the limitations of linear regression, as it may
not be the most suitable approach. Nonetheless, rather than discarding linear regression, an attempt to
enhance its capabilities to deal with data exhibiting non-linear patterns is intriguing. The success of this
approach could eliminate the need for employing deep learning unless it is genuinely essential.

To date, numerous studies have sought to enhance regression models. The first approach belongs to
a class of feature engineering intending to make the data more suitable and informative. This enables the
model to learn patterns and make more precise predictions. The works in [8-10] are examples of this approach.
However, feature engineering demands domain knowledge and a significant amount of time since we must
carefully analyze the relationships between input features and target variables. This task can become
challenging, especially when dealing with large input feature sets. The second approach is the so-called
regularization. This technique adds a penalty term to the model’s loss function [11-14]. The last approach
introduces non-linearity to linear regression, such as using basis functions [15] and certain classes of statistical
models like generalized linear models (GLMs) [16]. Unfortunately, the drawbacks of the latter two are that a
solid knowledge of mathematics and statistics and coding skills are highly required. This complexity is further
compounded when using standard platforms like scikit-learn in Python [17], as modifying the library’s code
as suggested by the mentioned papers might be nontrivial. Of course, these techniques may not suit every
artificial intelligence (Al) developer, especially beginners.

Therefore, this research aims to develop a novel, user-friendly algorithm that can enhance the
performance of linear regression models without involving the intricacies of daunting mathematical
expressions, which might pose challenges to certain Al developers. Instead, we achieve this by incorporating
a simple model like K-nearest neighbor (KNN) into our proposed algorithm. The algorithm’s implementation
is also designed to be straightforward, ensuring accessibility even for individuals not well-versed in coding.
Three housing price datasets in [18-20] have been selected to assess the proposed algorithm's effectiveness.
The choice of housing price data is due to its significance in various aspects. The first obvious reason is that
they are standard and popular datasets for regression tasks. Apart from the technical reason, housing prices
substantially impact the economy, as the real estate market plays a vital role in driving economic growth and
stability [21]. In terms of modeling, some studies in [22-26] have attempted to construct machine learning
models for housing price prediction. However, these studies relied on various common machine learning tools
such as exploratory data analysis, linear regression, artificial neural networks, support vector machines, and
gradient boosting trees, and none of them introduced novel methodologies.

2.Background
We commence by offering a concise overview of K-Nearest Neighbors (KNN), linear regression, and
principal component analysis (PCA), as these methodologies will be subsequently applied in this research.

2.1 K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is a straightforward and instinctive machine learning technique in
classification and regression tasks. It is categorized within the class of instance-based, non-parametric
approaches. The central idea behind KNN is that data points with similar features tend to belong to the same
class or exhibit similar behaviors [15]. To determine similarity, in this study, we use the so-called Euclidean
norm or L?-norm defined as follows:

llx =yl = V2L, (i = y)? (D
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where x = (xq, ..., X,), ¥ = V1, -, ¥n) € R™. Intuitively, the closer two vectors are, the smaller their L>-norm is.
Hence, the predictive outcome for classification tasks is the class label, determined by selecting the most
frequently occurring class among the K nearest neighbors. To clearly understand how KNN works, Figure 1
demonstrates how the K-Nearest Neighbors (KNN) algorithm classifies a new data point (the red cross). If K
is set to be 3, the three nearest neighbors (inside the smaller dashed circle) include 2 green squares and 1 pink
triangle, resulting in a prediction of a green square due to the majority. However, if K =7, the seven nearest
neighbors (inside the larger dashed circle) include 3 green squares and 4 pink triangles, leading to a prediction
of a pink triangle instead. It can be noted that the value of the hyperparameter K plays a crucial role in
determining the classification outcome by considering different sets of nearest neighbors. To find an optimal
value of K, we can test various K values and choose the one that provides the best performance on a test set.
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Figure 1. The illustration of how the K-Nearest Neighbors (KNN) algorithm works to classify new data point,
represented by the red cross, with K=3 and 7.

2.2 Linear Regression

Let X be an input matrix in R™*? and y a target vector in R". Linear regression aims to find a vector
of parameters w in R% such that || Xw — y/||3 is minimized as much as possible. It is well-known that the solution
to this optimization problem is w = (XTX)~1XTy [27]. Note that since w is a result of matrix multiplication, it
becomes clear that linear regression might exhibit poor performance in cases where the underlying pattern is
not linear.

2.3 Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique used in data analysis and machine learning to transform
a dataset into a new coordinate system, where the data’s variance is maximized along the new axes. For
example, if the original data has 200 input features, PCA can transform the dataset to reduce the number of
features to any desired amount, such as 50. Moreover, with PCA, we can ensure that the new dataset with 50
input features effectively represents the original dataset.

PCA identifies the principal components (linear combinations of the original features) that capture the
most significant variation in the data. These principal components are ordered by importance, allowing for
the retention of the most informative components while reducing the dimensionality of the dataset. The
algorithm for dimensionality reduction using PCA is as follows [15]:

Input Variables:
e X:Original standardized data matrix with dimensions m x n (where m is the number of samples and
n is the number of features).
e k: Desired number of principal components, i.e., the number of features of the newly transformed data.
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PCA Algorithm:
1. Calculate the covariance matrix (Z) of X.

1
r:= —XTX
m

Decompose X using eigen-decomposition as a product of an orthogonal matrix V whose columns are
the real-orthonormal eigenvectors of X, and a diagonal matrix A whose entries are all the eigenvalues of Z.

X =VAVT
2. Sort the eigenvalues in A in descending order and rearrange the eigenvectors in V accordingly (if
necessary).
3. Choose the top k eigenvectors corresponding to the largest k eigenvalues to form the matrix of

principal components.

Ve = V[:,1:k]

where V[:, 1: k] refers to the selection of the first k columns from the matrix V.
4. The output (transformed) data is given by XV, which is a matrix of dimension m X k.

PCA is generally admitted as a valuable tool for simplifying complex data, visualizing patterns, and removing
multicollinearity in feature sets, making it a fundamental technique in data preprocessing and exploratory
data analysis. In this study, PCA is an optional tool that is not integrated into any part of the proposed
algorithm. Instead, we only employ it as a tool for data preprocessing to reduce the dimensionality of data to
avoid prolonged computational processing.

3. Motivation and Methods

Before presenting the pseudocode algorithm of our proposed method, let us first delve into the idea
behind it.

3.1 Motivation

0 1 2 3 4 5

Figure 2. Scatter plot of 200 data points (red) with errors deviating from the equation y = v17x + 3.7 + 17
(dark red) and the regression line (green).
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In Figure 2, we simulate a scenario where the true model represents the relationship between the x-
axis and y-axis through the equation y = V17x + 3.7 + 17. After that, the 200 data points generated from the
equation but with added noise or errors represent the data we collected. We also plot the linear regression line
(in green) fitted from this data. Notably, the linear regression model did not perform well in this case, clearly
due to the underlying non-linear pattern presented in the data.
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Figure 3. Round-1 linear regression line (black) fitted from the filtered data points (grey dots).

However, from Figure 3, if we pick only data points where the error between the predicted value and
the actual value is less than the 70th percentile of the error observed in the entire dataset (in grey), the very
linear regression line called round-1 linear regression line (in black), perform better with this filtered data.
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Figure 4. Round-2 and round-3 linear regression lines fitted from the corresponding filtered data points.

Next, we iterate the above step and yield the round-2 linear regression line (depicted in blue in Figure
4). It is obtained by fitting the remaining data in Figure 3, and subsequently, we select only the best-fitted data
points (shown in cyan), as illustrated in Figure 4. We then repeat this process for one more round, yielding the
round-3 linear regression line (in purple) and its corresponding data (in violet). Of course, this process will
continue until all the data has been accounted for. Every data point has been assigned to an appropriate
subgroup or neighbor and its corresponding linear regression line. At the end of this process, all the data is
categorized into multiple neighbors, each with its own well-predicted linear regression line. When predicting
the value of an unseen data point, we first determine which neighbor the new data point best fits through the
k-nearest neighbor (KNN) model. Then, we employ that neighbor's corresponding linear regression line to
receive the prediction. For example, suppose that the KNN model identifies a new data point resembling the
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cyan neighbor’s pattern. Then, we utilize the blue linear regression line to forecast the expected outcome of
this unseen data. The above approach would make more accurate predictions based on the characteristics of
similar data points within the same neighborhood. These concepts form the foundation of the algorithm
proposed by this research, as shown in Table 1.

Table 1. The proposed algorithm

Pseudocode

Input

iter the number of iterations to obtain multiple neighbors of data and their corresponding
linear regression lines

n_perc the nth percentile in the dataset

num_knn the number of nearest neighbors to use for k-nearest neighbors (KNN) model

X_train training data

y_train target variable of the training data

X_test test data

Output

Xi,..., Xiter a sequence of neighbors of the data in each iteration

I_reqs,...,I_regier  a sequence of the linear regression models corresponding to the neighbors of the data
y_pred the predicted values from X_test by the proposed algorithm

Step 1: Find all the neighbors and build their corresponding linear regression models.

X =X_train
y=y_train
fori=1 toiter:
[_reg fit(X, y)
pred = I_reg.predict(X)
dist = |pred -y
threshold_dist = n_perc in dist data
if i # iter:
Xi=X whose dist < threshold_dist
I_regi=1_reg
X = X not containing Xi
y =y which corresponds to X

else:
Xi=X
I regi=1_reg

Step 2: Predict the target values.

# Determine the neighbor to which each data point in X_train belongs.

y_knn=[i for x in X_train if x belongs to Xi ])

# Build a KNN model
KNN.fit(X_train, y_knn, n_neighbors = num_knn)

# Forecast the outcome values

for xj in X_fest:
neighbor = KNN.predict(xj)  # To get the neighbor to which x;j belongs
y_pred;=1_regneignor.predict(xj) # Use the corresponding linear regression of neighbor to forecast
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Table 1 shows three parameters for the algorithm: iter, n_perc, and num_knn. To find the optimal value
for each parameter, we can experiment with various combinations of their settings to find the most effective
one. This process is commonly referred to as “grid search.” Iter aims to set the number of iterations required
to obtain multiple neighbors of the data and their corresponding linear regression lines. N_perc removes data
points that poorly fit the linear regression line. As for the last parameter, num_knn acts as a hyperparameter
for the KNN model. Recall that KNN allows us to identify the most suitable neighbor to which any unseen
data point belongs and then determine the linear regression line for prediction.

While KNN is integrated, this does not introduce additional complexity to the proposed algorithm. It
can be noted that each line of code presented in Table 1 is just a routine command typically employed by data
scientists. Furthermore, no modifications to the existing library code are required. All of these are to ensure
that the implementation remains trouble-free for users.

Before applying the proposed algorithm to the datasets, it is vital to mention that Figure 4 serves only
the purpose of visualizing how the algorithm works, even though concerns about overfitting might exist.
However, this concern may not be as significant when dealing with real-world data because the simulated
data in Figure 4 has only a quadratic pattern, less complex than any actual data. Also, linear regression is not
a complex model. In particular, the overfitting issue is problematic because the model cannot accurately
predict unseen data. Hence, if our algorithm can produce a model with better performance than the baseline
model, it is legitimate to say the proposed algorithm is successful.

3.2 Methods

Now, we will employ the proposed algorithm to the three selected datasets. The process involves the
following steps. For simplicity in evaluating the effectiveness of the proposed algorithm, some conventional
steps like exploratory data analysis, data imputation to fill missing values, feature selection, and feature
engineering will be omitted.

3.2.1 Data Preparation

The three datasets: house prices [18], California housing prices [19], and Boston house prices [20],
underwent conventional techniques like dropping features with many missing values and removing rows
containing missing values. All the categorical features were transformed using one-hot encoding (if necessary).
Furthermore, in the case of the first dataset, the PCA algorithm in section 2.3 was applied due to its large
number of input features (297) resulting from one-hot encoding. Setting the number of principal components
to 150, the PCA-transformed data will have only 150 input features. Table 2 presents an overview of the
preprocessing steps performed on each dataset during this phase.

Table 2. Summary of data characteristics and data preprocessing steps of the three datasets.

Item House Prices California Housing Prices Boston House Prices
Size of raw data 1,094x76 20,433x10 506x14
D i Alley, PoolQC, MiscFeature,
ropping ey, Poo Q iscFeature None Nore
column FireplaceQu, and Fence
Number of
categorical 42 1 0
features
Y
PCA ° No No

(150 principal components)

Number of input

f 150 13 13
eatures

Target feature SalePrice median_house_value MEDV
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3.2.2 Train-test Split
Each dataset is split into training and test sets with a ratio of 67:33. The target feature for each dataset
is shown in the final row of Table 2. This means we have X_train, X_test, y_train, and y_test for each housing dataset.

3.2.3 Model Training and Prediction

The proposed algorithm fits the input features (X_train) and the output feature (y_train) of the training
dataset for each of the three datasets. However, since the proposed algorithm comprises three
hyperparameters, iter, n_perc, and num_knn, different combinations of these values can yield various models
with varying performance levels. Consequently, the optimal combination of these hyperparameter values is
crucial. In this paper, to obtain the best parameter configuration for the algorithm, we loop through all the
combinations of the following settings :

e iter €{1,2,3,4,5,6,7,8},
e n_perc €{0.3, 0.5, 0.7,0.75},
e num_knn €{1,3,17,31, 59, 93}.

In more detail, we exhaustively tried all the 8x4x6 = 192 possible combinations from the given set of each
hyperparameter to build 192 regression models and then predict the target values (y_pred) from the test
datasets of the three housing datasets.

It is worth mentioning that the range or values of each hyperparameter can be set arbitrarily. The
broader the ranges we specify, the higher the chance of finding more optimal parameters; however, this will
require more time. This process involves a trade-off between the thoroughness of the search and the time
required to perform it. While there is no guarantee of finding the absolute optimal solution, this approach
ensures we identify the most optimal combination within the given set of hyperparameters.

3.2.4 Model Evaluation

Following the generation of 192 sets of predicted values (y_pred) of each housing dataset from the
previous step, we compute several standard regression evaluation metrics using the y_pred values and the
y_test values from subsection 3.2.2. These metrics will select the best model among the 192 models. The
evaluation metrics include root mean square error (RMSE), R?-score, mean absolute percentage error (MAPE),
and mean absolute error (MAE), as follows:

RMSE — Z’ilzl(yi_ﬁ)z (2)
n

2 -1 _ Zin0i9)?
RP=1 L, 0i-9)? )
— Lyn |yizh
MAPE = =37, | . | 100 (4)
1 ~
MAE = =~ Y1y — 3l ()

where y; is the ith actual output value (the ith value of y_test), ¥, is the ith predicted value (the ith value of
y_pred ), y is the average of the actual output values, and n is the number of rows of the test set. Note that the
four metrics share the common goal of measuring how well a model’s predictions align with the actual
observed values, although their formulae are different, and the best model is the one with the highest R2-score
and the lowest RMSE, MAPE, and MAE.
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4. Results and Discussion

The most optimal parameter configurations for iter, n_perc, and num_knn across the three selected
housing price datasets, along with the corresponding values of the four evaluation metrics for regression, are
shown in Table 3. The evaluation metrics obtained from the traditional (baseline) linear regression models to
assess the effectiveness of the proposed algorithm are also provided in this table.

Table 3. Best parameter configurations and the four evaluation metrics across the three datasets.

Item House Prices California Housing Price  Boston House Prices
Best of 3,0.75,17 5,0.3, 59 6,05, 1
(iter, n_perc, num_knn) (3,0.75,17) (5,03,59) (6,05,1)
Baseline 51,186.151 66,572.595 4.907
RMSE
Proposed 47,448.611 65,484.518 4.260
- Baseline 0.535 0.665 0.747
Proposed 0.601 0.676 0.809
Baseline 0.155 0.280 0.189
MAPE
Proposed 0.139 0.274 0.162
Baseline 24,534.293 48,767.613 3.671
MAE
Proposed 22,408.018 47,832.910 3.094

Table 4. Percentage change in the evaluation metric values for the proposed models compared to the baseline
models across the different datasets.

Dataset Metric Percentage Change (%)

RMSE -7.302

R? 12.336

House Prices

MAPE -10.323

MAE -8.667

RMSE -1.634

R2 1.654

California Housing Prices

MAPE -2.143

MAE -1.917

RMSE -13.185

R? 8.300

Boston House Prices

MAPE -14.286

MAE -15.718

Among the three datasets, the Boston housing dataset shows the most robust linear pattern, with the
highest R?-score from the baseline model. In contrast, the House prices dataset displays the weakest linear
pattern. To see a clear comparison, we present Table 4, visually represented by Figure 5. The table provides
the percentage changes in the four performance metrics for the proposed models compared to the baseline
models across the three housing price datasets. Note that when it comes to RMSE, MAPE, and MAE, negative
percentages show enhancements in performance, whereas positive ones indicate deteriorations. Yet, this
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situation becomes otherwise for R2. This means that the proposed algorithm empirically enhances the
performance of the traditional models.

Specifically, according to Figure 5, it is evident that the proposed algorithm significantly enhances the
performance of the traditional linear regression model, achieving the best results in the case of the Boston
house prices dataset, while the improvement is the least pronounced in the California housing price dataset.
Furthermore, regardless of the underlying data pattern, the proposed model can effectively augment or
replace the traditional linear regression model. This is evidenced by the substantial percentage changes in the
evaluation metrics for the house prices dataset, which rarely exhibits a linear underlying pattern.

B House Prices M California Housing Price Boston House Prices

Figure 5. Percentage changes in evaluation metric values.

Examining the most challenging dataset for the proposed algorithm, the California housing price
dataset, our initial observation reveals a small degree of linearity through an R?-score of 0.665 from the baseline
model. This first indicates a more complex underlying pattern on this dataset. Also, the optimal value of
num_knn is extremely high, up to 59, reflecting that many data points are proximate. These issues lead to
difficulty partitioning data into multiple neighbors and constructing best-fitting linear regression lines.
Consequently, the proposed algorithm demonstrates its lowest effectiveness on this dataset. These findings
show that this dataset would be better suited for advanced models like gradient-boosted trees or deep
learning, even though the proposed algorithm can be deployed to enhance performance with modest
improvements. From the results, it is evident that the proposed algorithm can significantly enhance linear
regression. This improvement is particularly beneficial for fields that highly rely on linear regression, such as
the Capital Asset Pricing Model (CAPM) in finance [6], or those who value linear regression's simplicity and
interpretability. Yet, in some practical applications where precision is critical, it is advisable to consider other
advanced regression models—such as support vector machines, gradient boosting trees, neural networks, and
the proposed algorithm —to ensure that the most accurate and practical model is selected for real-world scenarios.

5. Conclusions

The study thoroughly evaluated the algorithmic approach to address the technical problem of linear
regression’s limitations when applied to non-linear data using three distinct housing price datasets: House
Prices, California Housing Prices, and Boston House Prices. The results demonstrate that the proposed
algorithm significantly improves the performance of the traditional linear regression model by decreasing
RMSE, MAPE, and MAE metrics while increasing the R? score across all the datasets. The success of our
proposed algorithm would be due to its capacity to break down complex datasets into smaller and manageable
neighbors and then construct individual linear regression models for each of them. This approach allows us
to capture finer patterns and relationships within the data, resulting in more accurate predictions with the
support of KNN. The utility of applying the proposed algorithm improves the performance of linear
regression models with a mathematically effortless approach. Still, it also contributes to the model selection
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process by indicating the suitability of inviting more complex models like deep learning in appropriate
scenarios. Moreover, Al developers could gain advantages from the proposed algorithm by freely substituting
their preferred model for linear regression. This might be another approach to enhance the performance of
any existing reliable models.
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