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Abstract: Near-infrared spectroscopy (NIR) analysis in laboratory-based 

settings has the potential to predict soil elements. The aim was to explore the 

effects of soil color on the prediction of total nitrogen (N), available phosphorus 

(P), and extractable potassium (K) contents using near-infrared spectroscopy in 

the range of 1000–2500 nm. Two hundred forty soil samples were collected from 

a paddy field in northeast Thailand. We divided the soil samples based on soil 

color using the Munsell color chart to construct a model to predict nutrient 

contents based on soil color. Regression models for soil nutrient contents were 

developed using partial least squares regression (PLSR) models. The best 

predictions were obtained for N (R² = 0.87, RMSE = 0.131), P (R² = 0.87, RMSE = 

7.713) and K (R² = 0.77, RMSE = 14.944). This research demonstrates the viability 

of employing Near-Infrared spectroscopy (NIRs) as a reasonable method for 

predicting soil nutrient contents. 

Keywords:  Soil color; Paddy soil; Soil nutrient contents; Near infrared; Partial 

square regression 

1. Introduction 

In recent years, there has been a significant demand for soil analysis 

methodologies that are precise, rapid, and pollution-free. This is because soil 

data information can be utilized for environmental monitoring, soil quality 

assessment, and precision agriculture [1, 2]. For this reason, near-infrared 

spectroscopy (NIRs) is considered an alternative to improve or complement 

traditional methods of soil analysis. Near-infrared spectroscopy has emerged 

over the past few decades as a rapid and robust analytical method for various 

agricultural applications [3]. In particular, this technique can assess various soil 

fertility properties simultaneously with a single spectrum, making reflectance 

infrared spectroscopy fast, time-saving, cost-effective, and efficient. In the NIR 

region, radiation is absorbed by different chemical bonds present in the sample, 

such as C–H, N–H, S–H, C=O, and O–H. Furthermore, the radiation is absorbed 

in a manner conforming with the concentration of these compounds. As a result, 

NIR reflectance spectra provide information about the organic composition of a 

soil sample. Nevertheless, NIR information cannot be directly inferred from the 

obtained spectra. NIR reflectance spectroscopy depends on calibrations and 

chemometrics techniques that employ absorbances at multiple wavelengths to 
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predict particular characteristics of a sample [4]. Thus, research on using near-infrared (NIR) spectroscopy in 

soil science has rapidly increased to determine soil properties. Several authors have demonstrated the efficacy 

of NIR reflectance spectroscopy in predicting macro- and micronutrients in soils [2, 5–11]. 

Soil color is a crucial indicator of soil properties and processes that reflect chemical, physical, and 

biological characteristics [12–14]. The three principal constituents of soil color are humus (black), calcium 

carbonates (white), and iron oxide (red or yellow). However, other soil components, such as manganese 

oxides, nitrogen oxides, and phosphorus oxides, can also contribute to soil color. These important nutrients 

can be identified by color variables such as lightness [15–18]. Moreover, soil texture, organic matter content, 

moisture level, and erosion influence soil color [19–21]. Soil color is commonly evaluated by a human observer 

visually comparing the color of a soil sample to the color chips specified by the Munsell Color System [22]. 

The Munsell color chips are organized based on the hue, value, and chroma color components, and the method 

for measuring soil color is elaborated in detail in Soil Science Division Staff [23]. Previous studies have 

demonstrated strong relationships between soil properties and the spectral reflectance of soils in the visible 

and near-infrared regions [24–31].  Thus, the goal of this paper is to investigate the potential of near-infrared 

spectroscopy (NIRs) to predict total nitrogen (N), available phosphorus (P), and extractable potassium (K) in 

paddy soil, using soil color as a criterion to divide the soil samples into a calibration data set and a validation 

data set. 

 

2. Materials and Methods 
2.1 Study area, soil sampling collection, and chemical analyses  

The soil sample in this study is paddy soil from northeast Thailand. It covers eight provinces, 

including Sakon Nakhon, Phanom, Amnat Charoen, Ubon Rachathani, Sisaket, Surin, Buriram, and 

Roi Et, with different soil groups. The samples were collected at depths of 0 –15 cm. In total, 240 

samples were used for this experiment. The soil samples were air-dried and sieved using a 2-mm 

sieve. The laboratory chemicals were analyzed for the total nitrogen (N) content, which was 

determined by the Kjeldahl method [32]. The available phosphorus (P) content was determined by 

the Bray II method [33]. The method described by Jackson and Chen [32] measured the extractable 

potassium (K) content. Table 1. shows the summary statistics of the chemical analysis of soil N, P, 

and K. 

Table 1. Descriptive statistics data of soil fertility used in this study. 

Soil color group Soil nutrients Min Max Mean SD 

Group one 

(10YR Value 3-5) 

N 

P 

K 

0.21 

3.16 

0.04 

1.40 

126.25 

442.25 

0.68 

39.49 

71.37 

0.37 

34.01 

64.14 

Group two 

(10YR Value 6-7) 

N 

P 

K 

0.07 

1.42 

18.41 

1.68 

80.68 

158.69 

0.68 

17.81 

46.65 

0.37 

13.77 

26.50 

Group three 

(7.5YR Value 5-7) 

N 

P 

K 

0.07 

5.23 

15.51 

6.30 

63.47 

175.31 

0.68 

17.81 

53.25 

0.94 

9.95 

38.45 

Group four 

(5YR Value 6-7) 

N 

P 

K 

0.07 

1.66 

0.01 

1.09 

106.95 

117.35 

0.46 

15.57 

26.23 

0.25 

21.12 

30.86 

N = total nitrogen (g kg-1) 

P = available phosphorus (mg kg-1) 

K = extractable potassium (mg kg-1) 
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2.2 Spectrum determination and soil color 

Spectral measurements in the 1000 – 2500 nm range were made with a Fourier-transform 

near-infrared (FT-NIR) spectrophotometer (Buchi N-500 NIRFlex; Switzerland). The measurements 

were conducted with a spectral resolution of 4 nm. The soil samples were placed in petri dishes and 

smoothed surfaces before the spectral measurement. We obtained the soil spectra in reflectance by 

averaging three scans for each sample. Subsequently, we converted the reflectance spectra to an 

absorbance spectrum (A) using A = log10(1/R). Before modeling, we divided the soil samples based 

on the Munsell color chart to create a model that predicts nutrient contents depending on soil color. 

Color can be represented using three-dimensional color space models. Soil color is typically 

described in both dry and moist conditions using the Munsell color system, which is based on three 

parameters: hue (dominant spectral color), value (lightness), and chroma (color purity) [22]. For 

Munsell, soil color was determined in the laboratory for moist soil samples, and the Munsell soil 

color was chosen for the closest chip. As a result, we can divide soil color into four groups: group 

one, which has a hue of 10YR and a value of 3 to 5 (⁓10YR Value 3-5) totaling 60 samples; group 

two, which has a hue of 10YR and a value of 6 to 7 (⁓10YR Value 6-7) totaling 60 samples; group 

three, which has a hue of 7.5YR and a value of 5 to 7 (⁓7.5YR Value 5-7) totaling 60 samples; and 

group four, which has a hue of 5YR and a value of 6 to 7 (⁓5YR Value 6-7) totaling 60 samples. 

 

2.3 Calibration Model  

For model construction, we utilized Partial Least Squares regression (PLSR). PLSR is 

commonly employed as a chemometric technique in Near-Infrared (NIR) analysis [5, 35–37]. The 

PLS regression is a multivariate regression modeling method suggested by [38]. This method can be 

employed to address the issue of co-linearity among independent variables. The PLSR can 

effectively extract latent variables (LVs) by excluding unexplainable information, ensuring that the 

LVs have the most dominant ability to explain the dependent variables [39].  

In this study, a regression model was constructed for each soil color group, including group 

one (10YR Value 3-5), group two (10YR Value 6-7), group three (7.5YR Value 5-7), and group four 

(5YR Value 6-7). The NIR spectral data (1000 – 2,500 nm) were used as the independent variable, 

while the N, P, and K contents were used as the dependent variables. The LVs were extracted from 

the independent variables related to the dependent variables [40]. The established calibration 

models were assessed and quantified by validating using cross-validation. The model performance 

was then evaluated using statistical parameters such as the coefficient of determination (R2) and root 

mean square error (RMSE). R2 reflects the model’s ability to interpret sample spectra, while RMSE 

refers to the errors between the predicted and actual nutrient contents. Generally, the closer the R2 

value is to 1, the closer the RMSE value is to 0, indicating better model performance [41]. 

3. Results and Discussion 

3.1 Effects of soil color on spectral behavior  

The spectral behavior of soil varies depending on a combination of factors such as reflectance intensity 

(albedo), absorption features (depth and amplitude), and spectral shape. These characteristics are influenced 

by the soil's physical, chemical, and mineralogical properties [42]. The absorbance behavior of four soil color 

groups is shown in Figure 1. The spectra of group one soil color (10YR 3-5) had a higher absorbance when 

compared to group two, group three, and group four. Based on the studies of soil series characters in group 

one samples, it is demonstrated that the soil is fine-textured soil (higher clay content) and poorly drained, 

adversely affecting the soil’s color and resulting in a darker hue. The differences in soil particle size were the 

primary cause of the variations in absorbance intensity, where soils with higher clay content showed more 

absorbed energy across the spectrum [43]. The spectral characters of Group Two, Group Three, and Group 

Four have a similar and low absorbed energy compared to Group One. This shows that groups two, three, and 

four had a higher sand content than group one. 
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Figure 1. Spectra of the four soil color groups 

G1 = soil color group one (10YR 3-5)  

G2 = soil color group two (10YR 6-7) 

G3 = soil color group three (7.5YR 5-7) 

G4 = soil color group four (5YR 6-7) 

 

However, the spectra of the four soil colors had similar behavior. The spectra exhibited robust 

absorption peaks at 1,400, 1,900, and 2,200 nm, attributed to molecular vibrations of hydroxyl (OH–) groups 

[44, 45]. The absorption feature at 1,900 nm was more pronounced, possibly due to water (H2O) in 

interstratified minerals [46]. Whiting et al. [45] have suggested that a stronger absorption intensity at 1,900 nm 

indicates the prevalence of structural H2O in 2:1 minerals, such as montmorillonite and vermiculite. The 

absorption feature at 2,200 nm indicates kaolinite dominance [46]. The soil mineralogy has been characterized 

by 2:1 type clays, including illite, smectite, and vermiculite with hydroxy interlayers. However, most of the 

soil is dominated by 1:1-type clays [46–49]. The high activity of clay fraction (CFA) in some horizons was found 

to be associated with not only 2:1 clay but also 1:1 + 2:1 clay (interstratified minerals), as reported by [49].  

Two types of minerals, namely 2:1 minerals or interstratified ones, exhibited a feature at 1400 nm, in 

addition to one sharper feature at 1900 nm and another with a more elongated shape at 2200 nm. The presence 

of both minerals simultaneously makes their identification difficult. However, in these soils, 2:1 clay minerals 

such as smectites and vermiculite are adsorbed at the surface by 1:1 minerals. The 2:1 minerals are found in 

the fine clay fraction (<0.2 mm) and are more likely to migrate in the soil due to the high content of 

exchangeable Na and Mg [46]. 

 

3.2 Accuracy of color to predict soil nutrients 

Partial least squares regression (PLSR) analysis was performed on soil color and soil absorbance to 

predict the contents of total nitrogen (N), available phosphorus (P), and extractable potassium (K). The 

nutrient content prediction results for the four soil color groups are presented in Table 2. The modeling 

accuracy shows that the four soil color groups performed satisfactorily in predicting N, P, and K. The N 

prediction model showed an R2 and RMSE ranging from 0.65 to 0.87 and 0.102 to 0.567 g kg-1. The P prediction 
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model showed an R2 and RMSE ranging from 0.35 to 0.87 and 7.713 to 15.314 mg kg-1, and the K prediction 

model showed an R2 and RMSE ranging from 0.47 to 0.77 and 14.944 to 45.237 mg kg-1. Moreover, our results 

show that the soil color in group two (10YR Value 6-7) was the best model to predict N. The R2 values were 

0.87, and the RMSE values were 0.131 g kg-1. The soil color in group four (5YR Value 6-7) was the best model 

to predict P and K. The R2 values were 0.87 and 0.77, and the RMSE values were 7.713 mg kg-1 and 14.944 mg 

kg-1. The models show that the soil color can predict soil nutrients. It has been shown in many research. For 

example, Franzmeier [50] reported correlations between soil organic matter and Munsell value and chroma 

with R2 values of 0.48. Lindbo et al. [51] used a chroma meter to measure soil color, organic carbon, and 

hydromorphology correlations. They reported an R2 value of 0.63 for the correlation between dry Munsell 

value and soil organic carbon. Konen et al. [20] used a chroma meter to develop correlations between soil 

color, organic carbon, and texture. They showed logarithmic correlations between reflectance, Munsell value, 

Munsell chroma, and soil organic carbon. The R2 values of their correlations ranged from 0.68 to 0.77. 

Moreover, Liles et al. [52] reported that soil type and parent materials influenced the lightness of the soil. They 

analyzed the relationship between the lightness of the soil and the total C content in forest soil around northern 

California. Their findings demonstrated that the R2 for the relationship between soil C% and the lightness 

value varied with different soil types and parent materials. For instance, the R2 values were 0.34 for all samples, 

0.83 for Inceptisols, 0.6 for Andisols, 0.036 for Alfisols, and 0.35 for Ultisols. Schulze et al. [21] highlighted 

those variations in regression equations that were significantly influenced by soil texture and landscape. 

Attempting to predict nutrient contents across diverse soil types and landscapes using a single equation is 

often challenging. Within a specific landscape, the primary soil-forming factors include topography and the 

texture of the parent material. However, when considering broader landscapes, the key factors shift to 

encompass parent materials and vegetation.  

Table 2. Accuracy of the prediction model based on soil color for the three soil properties. 

Soil color group Soil nutrients R2 RMSE 

Group one 

(10YR Value 3-5) 

N 

P 

K 

0.75 

0.80 

0.50 

0.146 

15.314 

45.237 

Group two 

(10YR Value 6-7) 

N 

P 

K 

0.87 

0.44 

0.67 

0.131 

10.456 

15.102 

Group three 

(7.5YR Value 5-7) 

N 

P 

K 

0.65 

0.35 

0.47 

0.567 

8.000 

29.659 

Group four 

(5YR Value 6-7) 

N 

P 

K 

0.84 

0.87 

0.77 

0.102 

7.713 

14.944 

R2 = coefficient of determination 

RMSE = root mean square error  

N = total nitrogen (g kg-1) 

P = available phosphorus (mg kg-1) 

K = extractable potassium (mg kg-1) 

 

4. Conclusion 
The NIR models we developed for predicting soil nutrient contents (total nitrogen, available 

phosphorus, and extractable potassium) use soil color as a predictor. The prediction of total nitrogen content 

in soil color group two (10YR Value 6-7) outperformed the prediction for total nitrogen in other soil color 

groups. For available phosphorus and extractable potassium, the best predictions were obtained from soil 

color group four (5YR Value 6-7). This demonstrates that combining NIRs with soil color can predict soil 

nutrient contents accurately. This method is efficient and nondestructive. It serves as an alternative to 
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traditional approaches.  In addition, although the model produced accurate predictions, its accuracy and 

robustness for future practical applications need to be validated in other study areas with more samples. 
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Abstract: Network intrusion detection is critical to cybersecurity, aiming to 

identify and mitigate unauthorized access and attacks on computer systems and 

networks. This study evaluates the effectiveness of three machine learning 

techniques—deep neural networks (DNN), gradient boost trees (GBT), and k-

nearest neighbors (KNN)—in detecting network intrusions. The performance of 

these models was assessed using a comprehensive dataset of 2,540,047 records 

encompassing 49 features across nine attack categories. The results indicate that 

GBT outperforms DNN and KNN in accuracy and robustness. These findings 

highlight the potential of GBT for enhancing intrusion detection systems and 

contribute valuable insights into the comparative performance of different 

machine learning algorithms in cybersecurity applications.  

Keywords: Network Attacks Forecasting; UNSW-NB15 Dataset; Deep Neural 

Networks; Gradient Boost Trees; k-Nearest Neighbors 

1. Introduction 

In the current digital landscape, the security of data, computer systems, 

and networks is paramount due to the critical nature of the information they 

contain, ranging from healthcare and financial data to personal records [1]. The 

increasing reliance on digital storage has escalated the risks associated with data 

breaches and cyber intrusions, which can lead to significant economic damage 

and degrade the performance of information systems [1]. Therefore, developing 

advanced Intrusion Detection Systems (IDS) is essential for preserving data 

confidentiality and system integrity. This study makes significant contributions 

by evaluating the effectiveness of three advanced machine learning techniques—

deep neural networks (DNN), gradient boost trees (GBT), and k-nearest 

neighbors (KNN)—in enhancing IDS. By comparing these techniques, the 

research provides valuable insights into their performance, aiding in developing 

more robust cybersecurity measures. Machine Learning (ML), with its adaptive 

learning capabilities from data, emerges as a potent tool for enhancing IDS by 

identifying and mitigating sophisticated cyber threats [2,3,4,5]. 

The application of ML in IDS development has attracted considerable 

attention due to its potential to improve intrusion detection efficacy significantly 

[6]. The UNSW-NB15 dataset, with its comprehensive coverage of various attack 

vectors such as Fuzzers, Analysis, Backdoors, DoS attacks, Exploits, and Viruses, 

provides an invaluable resource for IDS research and development, offering 

insights into potential vulnerabilities and the effectiveness of different detection 

strategies [7]. Previous studies have leveraged various ML algorithms to detect 
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