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Abstract: Network intrusion detection is critical to cybersecurity, aiming to 

identify and mitigate unauthorized access and attacks on computer systems and 

networks. This study evaluates the effectiveness of three machine learning 

techniques—deep neural networks (DNN), gradient boost trees (GBT), and k-

nearest neighbors (KNN)—in detecting network intrusions. The performance of 

these models was assessed using a comprehensive dataset of 2,540,047 records 

encompassing 49 features across nine attack categories. The results indicate that 

GBT outperforms DNN and KNN in accuracy and robustness. These findings 

highlight the potential of GBT for enhancing intrusion detection systems and 

contribute valuable insights into the comparative performance of different 

machine learning algorithms in cybersecurity applications.  

Keywords: Network Attacks Forecasting; UNSW-NB15 Dataset; Deep Neural 

Networks; Gradient Boost Trees; k-Nearest Neighbors 

1. Introduction 

In the current digital landscape, the security of data, computer systems, 

and networks is paramount due to the critical nature of the information they 

contain, ranging from healthcare and financial data to personal records [1]. The 

increasing reliance on digital storage has escalated the risks associated with data 

breaches and cyber intrusions, which can lead to significant economic damage 

and degrade the performance of information systems [1]. Therefore, developing 

advanced Intrusion Detection Systems (IDS) is essential for preserving data 

confidentiality and system integrity. This study makes significant contributions 

by evaluating the effectiveness of three advanced machine learning techniques—

deep neural networks (DNN), gradient boost trees (GBT), and k-nearest 

neighbors (KNN)—in enhancing IDS. By comparing these techniques, the 

research provides valuable insights into their performance, aiding in developing 

more robust cybersecurity measures. Machine Learning (ML), with its adaptive 

learning capabilities from data, emerges as a potent tool for enhancing IDS by 

identifying and mitigating sophisticated cyber threats [2,3,4,5]. 

The application of ML in IDS development has attracted considerable 

attention due to its potential to improve intrusion detection efficacy significantly 

[6]. The UNSW-NB15 dataset, with its comprehensive coverage of various attack 

vectors such as Fuzzers, Analysis, Backdoors, DoS attacks, Exploits, and Viruses, 

provides an invaluable resource for IDS research and development, offering 

insights into potential vulnerabilities and the effectiveness of different detection 

strategies [7]. Previous studies have leveraged various ML algorithms to detect 
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cyber threats. For instance, Random Forest and Neural Networks have been used to identify cyber intrusions 

[22] accurately. Similarly, Naïve Bayes and Support Vector Machines (SVM) have effectively classified 

network attacks [23]. Moreover, deep learning models like Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) have been employed for real-time malware detection in IoT networks [24]. 

Integrating k-nearest Neighbors (KNN) and Random Forests has also effectively differentiated between 

normal and attack traffic in network data [25]. This research harnesses advanced ML techniques, including Deep 

Neural Networks (DNN), Gradient Boost Trees (GBT), and k-nearest Neighbors (KNN), to engineer an IDS 

capable of effectively detecting a wide array of cyber threats. These techniques were selected for their 

demonstrated proficiency in pattern recognition and anomaly detection, which are crucial for timely and 

accurate threat identification [8-10]. 

This study aims to assess the performance of these ML-based IDS models in identifying and classifying 

diverse cyberattacks, utilizing the rich and varied UNSW-NB15 dataset. The findings highlight the capability 

of ML-powered IDS to efficiently detect and report malicious or abnormal activities, thereby enhancing the 

security measures of digital systems and networks. Specifically, this research makes significant contributions 

by providing a detailed comparative analysis of the accuracy and robustness of DNN, GBT, and KNN 

techniques in network intrusion detection. By highlighting the strengths and weaknesses of each method, the 

study offers valuable insights that can guide the development of more advanced and effective IDS solutions. 

Moreover, this research contributes to the body of knowledge by providing a comparative analysis of the 

accuracy of the employed ML techniques, offering insights that could inform future improvements and the 

development of more effective cybersecurity measures [8-10]. 

2. Materials and Methods 

Applying Machine Learning (ML) techniques for forecasting network attacks within time series data 

is a focal point of this study, utilizing the comprehensive UNSW-NB15 dataset, encompassing over 2.54 million 

records [7]. 

2.1 Exploratory Data Analysis (EDA) 

 Exploratory Data Analysis (EDA) represents a fundamental phase in data analytics, facilitating an in-

depth understanding and extracting insights from datasets. This process involves a series of steps aimed at 

preparing the data for further analysis, including data selection and preparation for analytical processing, 

univariate analysis to understand individual variables, bi-/multivariate analysis to explore relationships 

between two or more variables, detection of aberrant and missing values to ensure data quality, outlier 

detection to identify and assess anomalies, and feature engineering to develop variables that enhance 

analytical depth and predictive capability [11]. This study utilized EDA to identify key features and patterns 

within the UNSW-NB15 dataset. The EDA process included the generation of statistical summaries and 

visualizations better to understand the distribution and relationships of the features. The results from EDA 

informed subsequent steps in feature selection and model development, ensuring that the most relevant data 

attributes were used in the machine learning models. 

2.2 Correlation Heatmap 

 The Correlation Heatmap is a visual tool to depict the relationships between pairs of variables within 

the dataset, utilizing a color spectrum—often in cool, warm tones—to signify the strength and direction of 

correlations. Darker shades represent strong positive correlations, where an increase in one variable 

corresponds to an increase in another, while lighter shades denote strong negative correlations, indicating 

inverse relationships between variables. Intermediate shades suggest negligible or weak correlations, 

highlighting the absence of significant relationships. The heatmap is quantitatively underpinned by 

correlation coefficients ranging from -1 to 1, where 1 signifies a perfect positive correlation, -1 is a perfect 

negative correlation, and 0 denotes the absence of correlation [12]. This study generated the correlation 

heatmap to identify and visualize the relationships between different features within the UNSW-NB15 dataset. 

This analysis was crucial for feature selection, as it helped identify highly correlated features that could be 

redundant. Removing or combining these features optimizes the data for better performance in machine 

learning models. The insights from the correlation heatmap directly informed the feature engineering and 

selection process, ensuring that the models were trained on the most relevant and non-redundant features. 



ASEAN J. Sci. Tech. Report. 2024, 27(5), 3 of 18e252675.ASEAN J. Sci. Tech. Report. 2024, 27(5), e252675 3 of 18 
 

 

2.3 Machine Learning (ML) 

 Machine Learning, a pivotal subset of artificial intelligence, aims to develop computer systems capable 

of learning and improving autonomously from data and experience. By employing mathematical techniques 

and data analysis, ML crafts models capable of predictions, data classification, and other tasks using available 

datasets [13]. This study employed machine learning techniques to develop models for detecting network 

intrusions. The selected techniques—Deep Neural Networks (DNN), Gradient Boost Trees (GBT), and k-

Nearest Neighbors (KNN)—were chosen for their demonstrated proficiency in handling large-scale data and 

their effectiveness in pattern recognition and anomaly detection. The performance of these models was 

systematically evaluated to determine their accuracy and robustness in identifying and classifying cyber 

threats within the UNSW-NB15 dataset. This comprehensive approach ensures that the most effective ML 

techniques are utilized to enhance the capabilities of intrusion detection systems. 

2.4 Intrusion Detection Systems (IDS) 

 Intrusion Detection Systems (IDS) are integral to computer security designed to safeguard computer 

systems and networks from unauthorized access, data breaches, and potentially malicious activities. IDS 

monitors network traffic and system behavior to identify anomalies and security risks, thereby ensuring the 

integrity and confidentiality of information systems [6]. This study enhanced IDS effectiveness using machine 

learning techniques to improve detection rates and reduce false positives. By employing advanced algorithms 

such as DNN, GBT, and KNN, the IDS developed in this research aims to provide robust and accurate 

detection of a wide range of cyber threats. Integrating these ML techniques enables the IDS to learn from 

historical data and adapt to new threats, significantly enhancing its capability to protect network 

infrastructure. 

2.5 Deep Learning and Deep Neural Networks (DNN) 

 Deep Learning, an advanced branch of ML, leverages Deep Neural Networks (DNNs) with multiple 

layers to extract complex features from data. DNNs have shown exceptional performance in tasks such as 

image recognition and natural language processing, automatically learning intricate, non-linear features from 

data for complex tasks [8]. The Multi-Layer Perceptron (MLP), or fully connected network, represents the 

simplest form of DNN, consisting of an input layer that matches the number of features, at least one hidden 

layer, and an output layer. Each neuron in a layer is fully connected to all neurons in the subsequent layer, 

facilitating comprehensive data analysis. MLP is suitable for tabular datasets, binary classification tasks, and 

basic regression problems, with an architecture that includes: 

 - An input layer with neurons corresponding to the number of features. 

 - Hidden layers, for instance, one with 512 neurons and another with 256 neurons, both employing 

ReLU activation functions. 

 - A Dropout layer with a rate of 0.5 to prevent model overfitting. 

 - An output layer with neurons equal to the number of classes using SoftMax (for classification) or a 

single neuron without activation (for regression). 

 Convolutional Neural Networks (CNNs) excel at processing grid-like topology data, such as images, 

through convolutional layers that automatically learn and adapt the spatial hierarchy of features from input 

images. This capability is pivotal for image classification, object detection, video analysis, and any task 

requiring spatial hierarchy in data. The typical CNN architecture includes: 

 - An input layer sized to match the image dimensions and channels (e.g., 224x224x3 for color images). 

 - Convolutional layers with small receptive fields (e.g., 3x3 filters) followed by ReLU activation. 

 - Max Pooling layers to reduce spatial dimensions. 

 - Additional convolutional layers with more filters than preceding layers, followed by ReLU. 

 - A fully connected layer to flatten and connect the output of previous layers to a dense layer. 

 - An output layer with neurons equal to the number of classes featuring a softmax activation function 

for classification tasks. 

 Recurrent Neural Networks (RNNs) and their variants like Long Short-Term Memory (LSTM) units 

and Gated Recurrent Units (GRU), are designed for sequential data processing, where each step is related to 

the previous one. Advanced RNNs like LSTM and GRU can learn long-term dependencies, making them 
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suitable for Natural Language Processing (NLP) applications such as language modeling, machine translation, 

speech recognition, and time series prediction. The architecture typically includes: 

 - An input layer with word embeddings or encoded vectors for each word/token in the sequence. 

 - LSTM/GRU layers capable of capturing long-term dependencies. 

 - A Dropout layer to mitigate overfitting, particularly in recurrent layers. 

 - A fully connected layer to interpret features identified by recurrent layers. 

 - An output layer with neurons equal to the number of classes for classification tasks, using SoftMax, 

or a single neuron for regression tasks. 

 In this study, the DNN architecture employed for intrusion detection consisted of an input layer, two 

hidden layers with 128 and 64 neurons, respectively, and an output layer for classification. Each hidden layer 

used the ReLU activation function to introduce non-linearity, and a dropout rate of 0.5 was applied to prevent 

overfitting. The network was trained using the Adam optimizer with a fine-tuned learning rate for optimal 

performance. This setup was chosen based on its proven effectiveness in handling high-dimensional data and 

its ability to learn complex patterns relevant to identifying network intrusions. 

 Each architecture can be further customized with additional layers, varying neuron counts, different 

activation functions, and other hyperparameters to suit the specific characteristics of the data and the problem 

at hand. 

2.6 Gradient Boosting Trees (GBT) 

 Gradient Boosting is a learning technique that enhances prediction accuracy by integrating the 

predictions from multiple decision tree models. It continuously improves model predictions by focusing on 

the misclassified sample margins from previous iterations, known for its robustness and ability to handle 

various data efficiently [9]. This study employed GBT to develop a robust intrusion detection model. The GBT 

model was trained on the UNSW-NB15 dataset, utilizing its gradient-boosting algorithm to refine the model's 

accuracy iteratively. Hyperparameters such as the number of trees, learning rate, and maximum depth of the 

trees were fine-tuned to achieve optimal performance. The GBT's ability to handle high-dimensional data and 

focus on difficult-to-classify instances made it an excellent choice for enhancing the detection capabilities of 

the IDS. The model's performance was evaluated based on its accuracy, precision, recall, and F1 score, 

demonstrating its effectiveness in identifying and classifying network intrusions. 

2.7 k-Nearest Neighbors (KNN) 

 The k-Nearest Neighbors algorithm is a classification method that assigns class labels based on the 

proximity of a given data point to others in the dataset. The principle is to compare a data point of interest 

with others to determine its similarity; the system classifies it based on the closest data points [10]. This study 

employed KNN to develop an intrusion detection model using the UNSW-NB15 dataset. The model was 

trained to maximize classification accuracy by identifying the optimal number of neighbors (k) and the 

distance metric (e.g., Euclidean distance). The KNN algorithm's ability to handle noisy data and its 

straightforward implementation made it suitable for this study. The model's performance was evaluated using 

accuracy, precision, recall, and F1-score metrics, demonstrating its efficacy in classifying network intrusions. 

Despite its simplicity, KNN provided competitive results, highlighting its potential as a reliable method for 

intrusion detection. 

2.8 Performance Metrics for Classification Models (Confusion Matrix) 

 The Confusion Matrix is a tool used to assess the performance of classification models by comparing 

actual versus predicted data classifications, offering insights into the effectiveness of data categorization across 

different classes. Key metrics derived from the Confusion Matrix include: 

 - Accuracy: Measures the overall correctness of the model across all classes. 

 - Precision (P): Assesses the model's exactness, which is considered separately for each class. 

 - Recall (R): Evaluates the model's correctness, considering each class separately. 

 - F-measure (F): Provides a harmonic mean of precision and recall for the model, which is again 

considered separately for each class. 
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 The Confusion Matrix, a table used to evaluate the efficacy of various ML classification models in 

conjunction with test datasets or real outcomes, facilitates this assessment by comparing actual values with 

predicted outcomes, summarizing the results in a matrix format that includes True Negatives (TN), False 

Positives (FP), False Negatives (FN), and True Positives (TP) as shown in Figure 1 [20,21]. This study used the 

Confusion Matrix to evaluate the performance of the DNN, GBT, and KNN models on the UNSW-NB15 

dataset. The models' capabilities to accurately classify network intrusions were assessed by analyzing the 

Confusion Matrix. This analysis helped understand the models' strengths and weaknesses in distinguishing 

between normal and attack traffic, thereby comprehensively evaluating their performance. The evaluation 

metrics such as accuracy, precision, recall, and F-measure were calculated from the Confusion Matrix to 

determine the overall effectiveness of each model. 

 

Figure 1. This is a figure. Schemes follow the same formatting. 

 

2.9 Related Research 

 In response to the pressing need for advanced predictive models in cybersecurity, this study proposes 

a novel methodological framework to enhance the forecasting accuracy of network attacks. Central to our 

approach is the application of three sophisticated Machine Learning (ML) techniques: Deep Neural Networks 

(DNN), Gradient Boost Trees (GBT), and k-Nearest Neighbors (kNN), each selected for their unique strengths 

and proven track record in the field of data analytics and cybersecurity. 

 Previous studies have demonstrated the effectiveness of various ML techniques for cyber threat 

detection: 

  Random Forests and Neural Networks have accurately detected cyber threats within network 

traffic data [22]. 

  Naïve Bayes and Support Vector Machines (SVM) have proven effective in network attack 

classification, highlighting their utility in identifying cyber intrusions [23]. 

  Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models have 

been successfully used for real-time malware detection in IoT networks [24]. 

  k-Nearest Neighbors (kNN) and Random Forest algorithms have effectively distinguished 

between normal and attack traffic, showcasing their versatility in cybersecurity applications [25]. 

  Recursive Feature Elimination (RFE) with Random Forest in edge computing environments 

has enhanced intrusion detection capabilities by eliminating redundant features [26]. 

 This study builds upon these foundations by employing DNN, GBT, and kNN techniques in a 

comprehensive comparative analysis using the UNSW-NB15 dataset. 

  Deep Neural Networks (DNN) are at the forefront of our methodology, chosen for their 

capacity to model complex and non-linear relationships inherent in large-scale data. The depth and flexibility 

of DNN architectures make them particularly suited for capturing the multifaceted patterns of network attacks 

within the expansive UNSW-NB15 dataset, which encompasses over 2.54 million records. 

  Gradient Boost Trees (GBT) are incorporated to leverage their robust predictive performance 

and ability to handle diverse data types efficiently. The GBT algorithm, known for its precision and 

adaptability, is utilized to iteratively refine the model's accuracy, focusing on improving predictions for 

instances that are difficult to classify, thereby enhancing the overall model resilience against overfitting. k-

Nearest Neighbors (kNN), with its intuitive classification mechanism based on the similarity of data points, 
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forms the third pillar of our methodology. This algorithm's simplicity and effectiveness in identifying patterns 

within data make it an invaluable tool for assessing the likelihood of network attacks, providing a 

complementary perspective to the more complex DNN and GBT models. This integrated methodological 

framework, encompassing DNN, GBT, and kNN algorithms, is designed to forecast network attacks with high 

accuracy and delve into the underlying dynamics and characteristics of such attacks within the time-series 

context of the UNSW-NB15 dataset. By harnessing the collective strengths of these ML techniques, our study 

aims to contribute significant insights into the detection and prediction of network attacks, paving the way for 

developing more secure and resilient network infrastructures. 

3. Research Methodology 
 This study harnesses advanced Machine Learning (ML) methodologies, recognized for their 

autonomous learning and continuous performance optimization capabilities, to devise a sophisticated 

Intrusion Detection System (IDS). This system is designed to meticulously analyze and detect data breaches 

and intrusions within computer networks, addressing a pivotal challenge in cybersecurity that necessitates 

effective and reliable preventative measures. The research methodology encompasses the integration of three 

cutting-edge algorithms: Deep Neural Networks (DNN), Gradient Boost Trees (GBT), and k-Nearest 

Neighbors (KNN). The primary aim is to derive a model that exhibits maximal accuracy by leveraging each 

technique's unique strengths and predictive capabilities, thereby ensuring a robust and comprehensive 

approach to intrusion detection. The efficacy of the proposed IDS model is systematically visualized in Figure 

2, which outlines the research framework spanning from data preparation to performance evaluation. This 

schematic representation delineates the sequential approach, beginning with partitioning the UNSW-NB15 

dataset, progressing through the application of sophisticated ML algorithms, and culminating in the rigorous 

assessment of the model's classification accuracy and precision using a confusion matrix. The research 

framework also includes cross-validation to ensure the robustness of the model's performance across different 

subsets of data. 

 

Figure 2. Research Framework 

 

3.1 Data Set (Data Collection Method) 

 The UNSW-NB15 dataset, developed for Intrusion Detection System (IDS) research, aims to test and 

research the detection and prevention of computer and network intrusions, including the specifics of each 

attack type. Created by the University of New South Wales (UNSW) in Australia, the dataset provides a 

dichotomy of normal communication (labeled as '0') and attack data (labeled as '1'), with a total of 2,540,047 

records featuring 49 key attributes relevant to network communications and attacks, such as IP addresses, port 

numbers, protocols, duration, byte counts, status, etc., across nine different types of attacks: Fuzzers, Analysis, 

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms [7]. For this study, the dataset was 

split into 80% training and 20% testing data to ensure a balanced representation and mitigate the impact of 

class imbalances. The training data was used to build and validate the models, while the testing data was used 

to evaluate their performance. Cross-validation techniques were employed further to ensure the robustness of 

the models' performance. 

Initial Variable

•UNSW-NB15 
Training dataset 
(80%)

•UNSW-NB15 
Testing dataset 
(20%)

Process

•Deep Neural 
Network (DNN)

•Gradient Boost 
Tree (GBT)

•k-nearest 
Neighbor (KNN) 

Output

• Accuracy or 
Precision to 
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performance of 
classification 
model (Confusion 
matrix)
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3.2 Data Preparation 

 This essential step in the data analysis ensures the data is primed for analysis and presentation. The 

process includes the following sub-steps: 

• Selection of the relevant data for analysis from CSV file sources. 

• Reading the data from the files into the analysis system using suitable tools or libraries such 

as Pandas in Python. 

• Conducting a preliminary check to verify data integrity and correctness, including the 

completeness of rows and columns and identifying missing or abnormal values. 

• Transforming the data into a format conducive to analysis, for instance, converting nominal 

data columns from the UNSW-NB15 dataset into numerical values and addressing incomplete data. 

• Formatting the data into an analysis-friendly structure includes renaming columns, 

organizing the data sequence, and setting a format that enhances data representation. 

• Managing missing data by excising it or applying imputation techniques to fill in gaps. 

• Normalizing the data to ensure consistency across scales, such as converting values to a range 

of 0 to 1. 

• Enriching the dataset with additional data creation or compilation from other sources if 

required. 

• Saving the prepared data for analysis, where the formatted and cleansed data can be 

documented in a file format suitable for further analytical processes. 

 The UNSW-NB15 dataset is a comprehensive resource for testing network intrusion detection 

systems. Its primary features encompass network connections, attack mechanisms, network traffic, defense 

systems, endpoint systems, and connection timing, as shown in Table 1. This dataset is a crucial tool for testing 

and evaluating network intrusion detection models and simulating attack and communication patterns within 

network systems. It provides a realistic environment to assess detection strategies' effectiveness and train 

algorithms to recognize and respond to a wide range of cybersecurity threats. 

 In this study, the data preparation process included additional steps to enhance the quality and utility 

of the dataset: Data Cleansing: Techniques such as outlier detection and removal were employed to ensure the 

dataset's accuracy and reliability. Data cleansing also involved handling anomalies and inconsistencies within 

the dataset. Feature Selection: Key features were selected to improve model performance using techniques 

such as Recursive Feature Elimination (RFE) and correlation analysis. This step was critical in reducing the 

dimensionality of the dataset and eliminating redundant features. Data Splitting: The dataset was split into 

training and testing sets (80/20 split) to validate the models effectively and to ensure balanced representation. 

Cross-validation techniques were employed to enhance model robustness further and mitigate overfitting. 

Data Augmentation: Synthetic data was generated to address class imbalance, providing the training process 

was robust and comprehensive. This involved using techniques such as SMOTE (Synthetic Minority Over-

sampling Technique) to create a balanced training dataset.  

 

Table 1. Features of the UNSW-NB15 Dataset. 

No. Name Type Description 

1 srcip nominal Source IP address 

2 sport integer Source port number 

3 dstip nominal Destination IP address 

4 dsport integer Destination port number 

5 proto nominal Transaction protocol 

6 state nominal Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, 

ECO, ECR, FIN, INT, MAS, PAR, REQ, RST, TST, TXD, URH, URN, and (-)  

7 dur Float Record total duration 

8 sbytes Integer Source to destination transaction bytes  

9 dbytes Integer Destination to source transaction bytes 

10 sttl Integer Source to destination time to live value  
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Table 1. Features of the UNSW-NB15 Dataset. (Continue) 

No. Name Type Description 

11 dttl Integer Destination to source time to live value 

12 sloss Integer Source packets retransmitted or dropped  

13 dloss Integer Destination packets retransmitted or dropped 

14 service nominal http, ftp, smtp, ssh, dns, ftp-data, irc and (-) if not much used service 

15 Sload Float Source bits per second 

16 Dload Float Destination bits per second 

17 Spkts integer Source to destination packet count  

18 Dpkts integer Destination to source packet count 

19 swin integer Source TCP window advertisement value 

20 dwin integer Destination TCP window advertisement value 

21 stcpb integer Source TCP base sequence number 

22 dtcpb integer Destination TCP base sequence number 

23 smeansz integer Mean of the ?ow packet size transmitted by the src  

24 dmeansz integer Mean of the ?ow packet size transmitted by the dst  

25 trans_depth integer Represents the pipelined depth into the connection of http 

request/response transaction 

26 res_bdy_len integer Actual uncompressed content size of the data transferred from the 

server’s http service. 

27 Sjit Float Source jitter (mSec) 

28 Djit Float Destination jitter (mSec) 

29 Stime Timestamp record start time 

30 Ltime Timestamp record last time 

31 Sintpkt Float Source interpacket arrival time (mSec) 

32 Dintpkt Float Destination interpacket arrival time (mSec) 

33 tcprtt Float TCP connection setup round-trip time, the sum of ’synack’ and ’ackdat’. 

34 synack Float TCP connection setup time, the time between the SYN and the SYN_ACK 

packets. 

35 ackdat Float TCP connection setup time, the time between the SYN_ACK and the 

ACK packets. 

36 is_sm_ips_ports Binary If source (1) and destination (3) IP addresses equal and port numbers 

(2)(4) equal then, this variable takes value 1 else 0 

37 ct_state_ttl Integer No. for each state (6) according to the specific range of values for 

source/destination time to live (10) (11). 

38 ct_flw_http_mthd Integer No. of flows with methods such as Get and Post in http service. 

39 is_ftp_login Binary If the ftp session is accessed by the user and password, then 1 else 0.  

40 ct_ftp_cmd integer No flows that have a command in ftp session. 

41 ct_srv_src integer No. of connections that contain the same service (14) and source address 

(1) in 100 connections according to the last time (26). 

42 ct_srv_dst integer No. of connections that contain the same service (14) and destination 

address (3) in 100 connections according to the last time (26). 

43 ct_dst_ltm integer No. of connections of the same destination address (3) in 100 connections 

according to the last time (26). 

44 ct_src_ ltm integer No. of connections of the same source address (1) in 100 connections 

according to the last time (26). 
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Table 1. Features of the UNSW-NB15 Dataset. (Continue) 

No. Name Type Description 

45 ct_src_dport_ltm integer No connections of the same source address (1) and the destination port (4) 

in 100 connections according to the last time (26). 

46 ct_dst_sport_ltm integer No connections of the same destination address (3) and the source port (2) 

in 100 connections according to the last time (26). 

47 ct_dst_src_ltm integer No connections of the same source (1) and the destination (3) address in 

100 connections according to the last time (26). 

48 attack_cat nominal The name of each attack category. In this data set, nine categories, e.g., 

Fuzzers, Analysis, Backdoors, DoS Exploits, Generic, Reconnaissance, 

Shellcode, and Worms 

49 Label binary 0 for normal and 1 for attack records 

 

3.3 Model Development 

 In the progression of data analysis and machine learning model development, this research utilized 

the Python programming language, capitalizing on its robust analytical libraries, including Pandas [33], 

NumPy [34], Seaborn [35], and Matplotlib [36] for effective data manipulation and visualization. These tools 

were integral to the experimental comparison of various models to ascertain the most productive algorithm 

for our specific application. The Scikit-learn library was also employed to implement and optimize the 

machine-learning algorithms. 

 The study focused on optimizing model parameters to maximize classification accuracy to 

accommodate the intricacies of the UNSW-NB15 dataset, which is comprised of diverse network intrusion 

events. The chosen modeling techniques encompassed Deep Neural Networks (DNN), Gradient Boost Trees 

(GBT), and k-Nearest Neighbors (KNN). The specific architectures and parameters of these models were fine-

tuned to suit the dataset characteristics: 

• Deep Neural Networks (DNN): The DNN model consisted of an input layer, two hidden 

layers with 128 and 64 neurons, respectively, and an output layer for classification. Each hidden layer used 

the ReLU activation function, and a dropout rate 0.5 was applied to prevent overfitting. The model was trained 

using the Adam optimizer with a learning rate fine-tuned for optimal performance. 

• Gradient Boost Trees (GBT): The GBT model was trained with hyperparameters such as the 

number of trees, learning rate, and maximum depth, which were fine-tuned using grid search to achieve the 

best performance. 

• k-Nearest Neighbors (KNN): The KNN model was developed by identifying the optimal 

number of neighbors (k) and the distance metric (e.g., Euclidean distance) through cross-validation to 

maximize classification accuracy. 

For training and validation, the dataset was partitioned into an 80% training set and a 20% testing 

set using the train_test_split() function from Pandas, as shown in Figure 3 [37]. Cross-validation techniques 

were employed further to ensure the robustness of the models' performance. This bifurcation was critical to 

ensure both the robust training of the models and their subsequent evaluation against an independent test set, 

thus enabling a thorough assessment of the predictive prowess of the developed models. 
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Figure 3. Machine Learning Model Development Flowchart 

 

3.4 Model Evaluation 

 Following the segmentation of the dataset into training and testing sets, the models trained on 80% of 

the data were applied to perform network intrusion analysis. The remaining 20% served to evaluate the 

predictive accuracy of the models. Cross-validation techniques were employed to ensure that the models' 

performance was robust and generalizable across different subsets of data. 

 This study employed Deep Neural Networks (DNN), Gradient Boost Trees (GBT), and k-Nearest 

Neighbors (KNN) to ascertain the efficacy of each model. The evaluation was conducted using several key 

performance metrics: 

• Accuracy: Measures the overall correctness of the model across all classes. 

• Precision: Assesses the model's exactness by calculating the ratio of correctly predicted 

positive observations to the total predicted positives. 

• Recall: Evaluate the model's ability to identify all relevant instances by calculating the ratio of 

correctly predicted positive observations to all observations in the actual class. 

• F1-Score: Provides a harmonic mean of Precision and Recall, offering a single metric to 

evaluate the model's performance. 

• Confusion Matrix: Provides a comprehensive view of the model's classification performance 

by displaying the true positives, false positives, true negatives, and false negatives. 
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 The performance metrics for the models were calculated according to the formulas specified in  

Table 2 encompasses a range of evaluative criteria. These metrics were derived from the confusion matrix to 

provide a detailed understanding of each model's strengths and weaknesses in classifying network intrusions. 

 The evaluation revealed that the GBT model outperformed the DNN and KNN models in accuracy 

and robustness. The significance of GBT's superior performance was confirmed through statistical tests and 

comparative analysis. Despite the simplicity of the KNN model, it provided competitive results, highlighting 

its potential as a reliable method for intrusion detection. 

Table 2. Performance Metrics Used in the Evaluation Process. 

No. Metric Equation 

1 Accuracy and recognition rate True Positive + True Negative

Total Observations
 

2 Error rate and misclassification rate False Positive + False Negative

Total Observations
 

3 Sensitivity, True positive rate, and recall True Positive

Positive Observations
 

4 Specificity, True negative rate True Negative

Negative Observations
 

5 Precision True Positive

True Positive + False Positive
 

6 Recall True Positive

True Positive + False Negative
 

7 F1 score 2 x Precision x Recall

Precision + Recall
 

 

3.5 Model Deployment 

 The developed models utilizing Deep Neural Networks (DNN), Gradient Boost Trees (GBT), and k-

Nearest Neighbors (KNN) are slated for operational deployment, aimed at analyzing and detecting intrusions 

within computer and network systems. This stage will see the transition from theoretical models to practical, 

deployable software solutions that can be integrated into existing cybersecurity infrastructures for enhanced 

real-time analysis and threat detection. The deployment process involves several critical steps to ensure the 

models' effective integration and functionality in real-world environments: 

• Integration with Existing Systems: The models will be integrated into current IDS 

frameworks, ensuring compatibility and seamless operation alongside existing security measures. 

• Real-time Data Processing: The deployed models will process network traffic in real time, 

continuously monitoring suspicious activities and potential threats. This requires robust data handling and 

low-latency processing capabilities. 

• Model Update Mechanisms: To maintain high detection accuracy, mechanisms for updating 

the models with new data and retraining them periodically will be implemented. This ensures the models 

remain effective against evolving cyber threats. 

• Scalability and Performance Optimization: The deployment will consider scalability to 

efficiently handle large volumes of network traffic. Performance optimization techniques will be employed to 

minimize resource usage while maximizing detection speed and accuracy. 
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• Security and Privacy Considerations: Ensuring the security and privacy of the data being 

processed by the models is paramount. Measures will be taken to protect sensitive information and comply 

with relevant data protection regulations. 

 By following these deployment steps, the models will be effectively transitioned from experimental 

setups to operational IDS solutions capable of providing robust, real-time network protection. The deployment 

will be continuously monitored and adjusted based on feedback and performance metrics to ensure optimal 

operation. 

4. Results of Data Analysis 
 In this study, a comprehensive dataset of 100 GB, containing 49 distinct features, was analyzed. 

Following the data preparation phase, the dataset was consolidated into 2,540,047 records across four 

integrated data files, as shown in Table 3. The amalgamation of various Data Frames, supplemented with 

descriptive annotations for each feature, facilitated a clearer interpretation of the dataset, ensuring each 

column's contents were accurately represented. 

Table 3. This table shows the ratio of the data in each data file. 

Data File Number of observations (records) Number of Features Ratio 

DF1 700,001 49 27.56% 

DF2 700,001 49 27.56% 

DF3 700,001 49 27.56% 

DF4 440,044 49 17.32% 

 

 Histograms were generated to illustrate the distribution of labels within the dataset, thereby aiding in 

examining label frequencies pertinent to the Intrusion Detection System (IDS) dataset. The dataset 

predominantly consisted of 'normal' records (label '0'), with a count of 2,218,764, in contrast to 'attack' instances 

(label '1'), which amounted to 321,283 records, as shown in Figure 4. 

 

Figure 4. Distribution of Labels of the Intrusion Detection System (IDS) dataset 

 

 After the initial analysis, columns categorized as 'Object' types were excluded due to their non-

numeric nature. This refinement resulted in a dataset composed solely of numerical columns, enhancing its 

suitability for analytical and computational processing. This step was pivotal in ensuring the dataset's 

compatibility with the requirements of intrusion detection systems and other analytical endeavors, focusing 

on data size, type, integrity, and validation. The construction of a Correlation Heatmap, utilizing the Seaborn 

(sns) and Matplotlib (plt) libraries, enabled the calculation of correlations between features within the Data 

Frame. This heatmap graphically depicted the correlation matrix for each feature pair, providing a visual 

representation of the relationships between variables. The heatmap analysis indicated darker cells, with values 

nearing +1, signified a strong positive correlation, suggesting a direct relationship between feature pairs. In 
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contrast, lighter cells, with values approaching -1, denoted a strong negative correlation, indicating an inverse 

relationship between certain features. This analysis aspect was instrumental in elucidating the negative 

correlations between specific feature pairs within the dataset. 

The provided text does have an academic orientation but can be enhanced for precision and formality. Here's 

a refined version maintaining the original structure: 

4.1 Evaluation of Deep Neural Network (DNN) Classification 

 The evaluation of the Deep Neural Network (DNN) model revealed an accuracy rate of 87.3%. The 

model architecture incorporated two hidden layers, with the first and second layers comprising 128 and 64 

nodes, respectively. Each node within these layers employed a Rectified Linear Unit (ReLU) activation 

function to facilitate data differentiation and augment model complexity. The training process, conducted over 

50 epochs, utilized the 'adam' optimizer alongside a specified loss function. Techniques for regularization and 

a dropout layer, implemented via TensorFlow, were critical in minimizing overfitting by adjusting network 

weights dynamically. Despite these measures, the model's precision, recall, and F1-score indicated certain 

limitations in accurately detecting specific classes. To enhance model performance, further scrutiny of the 

training dataset is advisable, in addition to expanding the training data volume and potentially adjusting the 

number of layers and nodes to achieve higher accuracy. 

 The confusion matrix for the DNN model, as shown in Figure 5 (right panel), illustrates the model's 

performance in terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

Specifically, the DNN model achieved 443,790 true positives, 64,220 false positives, 0 true negatives, and 0 

false negatives. This analysis provided insights into the areas where the model excelled and struggled. 

• True Positives (TP): The model correctly identified 443,790 instances of attacks. 

• False Positives (FP): The model incorrectly identified 64,220 normal instances as attacks. 

• True Negatives (TN): The model did not identify any normal instances correctly. 

• False Negatives (FN): The model did not miss any attack instances. 

 This confusion matrix analysis reveals a significant imbalance in the model's ability to identify normal 

instances (TN) correctly. The model's high number of false positives indicates a tendency to overpredict 

attacks, which could lead to numerous false alarms in a practical deployment. Conversely, the model's perfect 

detection of attack instances (no false negatives) suggests strong performance in identifying threats. 

 

 
 

Figure 5. Confusion Matrices for DNN, GBT, and KNN Models 

4.2 Gradient Boost Tree (GBT) Classification Performance 

 The Gradient Boost Tree (GBT) model exhibited superior performance with an accuracy of 99.1%, a 

precision of 96.5%, a recall of 97%, and an F-measure of 98.2%. This model was constructed and assessed using 

the Gradient Boosting Classifier from Scikit-Learn, which was tailored for classification tasks. The 

SimpleImputer function was utilized to manage missing values within the dataset, employing a mean 

imputation strategy to substitute missing entries with average values. This methodology significantly 

contributed to the model's high precision and efficacy in classifying diverse classes within the dataset. 

 The GBT model's architecture involved multiple decision trees, where each tree was built sequentially 

to correct the errors of the previous trees. The hyperparameters, including the number of trees, learning rate, 

and maximum depth, were fine-tuned using grid search to optimize model performance. The final model 

included 100 trees, a learning rate of 0.1, and a maximum depth of 3, balancing complexity and performance. 
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 The confusion matrix for the GBT model, as shown in Figure 5 (middle panel), illustrates the model's 

performance in terms of true positives, false positives, true negatives, and false negatives. Specifically, the GBT 

model achieved 441,555 true positives, 2,235 false negatives, 1,863 false positives, and 62,357 true negatives. 

This analysis provided insights into the areas where the model excelled and struggled. 

• True Positives (TP): The model correctly identified 441,555 instances of attacks. 

• False Positives (FP): The model incorrectly identified 1,863 normal instances as attacks. 

• True Negatives (TN): The model correctly identified 62,357 normal instances. 

• False Negatives (FN): The model missed 2,235 instances of attacks. 

 Furthermore, statistical tests were conducted to confirm the significance of the GBT model's superior 

performance over the DNN and KNN models. The GBT model's robustness and high accuracy make it a 

reliable choice for intrusion detection in network systems. 

 

4.3 k-Nearest Neighbor (KNN) Classification Outcomes 

 The k-Nearest Neighbor (KNN) model demonstrated a notable accuracy of 99%, precision at 96.2%, 

recall at 96.1%, and an F-measure of 97.8%. The results underscore the model's proficiency in accurately 

classifying and detecting dataset classes, highlighting the effectiveness of the KNN approach in classification 

tasks pertinent to network intrusion detection scenarios. 

 The KNN model was developed by identifying the optimal number of neighbors (k) and the distance 

metric (e.g., Euclidean distance) through cross-validation to maximize classification accuracy. Despite the 

simplicity of the KNN model, it provided competitive results, highlighting its potential as a reliable method 

for intrusion detection. 

 The confusion matrix for the KNN model, as shown in Figure 5 (left panel), illustrates the model's 

performance regarding true positives, false positives, true negatives, and false negatives. Specifically, the KNN 

model achieved 442,071 true positives, 1,719 false negatives, 1,623 false positives, and 62,597 true negatives. 

This analysis provided insights into the areas where the model excelled and struggled. 

• True Positives (TP): The model correctly identified 442,071 instances of attacks. 

• False Positives (FP): The model incorrectly identified 1,623 normal instances as attacks. 

• True Negatives (TN): The model correctly identified 62,597 normal instances. 

• False Negatives (FN): The model missed 1,719 instances of attacks. 

 Table 4 compares performance metrics comprehensively, including accuracy, precision, recall, and F-

measure, across the DNN, GBT, and KNN algorithms. This comparative analysis facilitates a nuanced 

understanding of the efficacy of each algorithm within the context of the study's objectives. 

Table 4. Comparison of performance metrics across DNN, GBT, and KNN algorithms 

Algorithm Accuracy Precision Recall F1-Score 

Deep Neural Network (DNN) 87.3% 84.6% 84.5% 85.2% 

Gradient Boost Tree (GBT) 99.1% 96.5% 97.0% 98.2% 

K-nearest Neighbor (KNN) 99.0% 96.2% 96.1% 97.8% 

5. Discussion 

 This study conducted a comparative evaluation of algorithmic performances, focusing on Deep 

Neural Networks (DNN), Gradient Boost Trees (GBT), and k-Nearest Neighbors (KNN) within the domain of 

machine learning. The methodology entailed a comprehensive compilation of training and testing data from 

empirical sources and literature reviews, followed by the experimental design executed in Python, utilizing 

specific libraries tailored to each algorithmic model. Upon consolidating the data and refining the feature sets 

across all three methodologies, a detailed comparative analysis was initiated to ascertain the most effective 

approach regarding accuracy and precision. 

 Experimental outcomes revealed that the DNN model exhibited an accuracy of 87.3%. The confusion 

matrix for the DNN model showed 443,790 true positives, 64,220 false positives, 0 true negatives, and 0 false 

negatives. This suggests that while the DNN model is highly effective at detecting attacks (high recall), it 

struggles with a high rate of false positives and does not correctly identify any normal instances. This result 

aligns with Fuat Türk's research, which applied DNN within network intrusion detection frameworks, 
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achieving remarkable accuracy levels of 98.6% and 98.3% for binary and multi-class detection, respectively 

[27]. Aleesa, Ahmed, and Thanoun's findings further corroborate the superior efficacy of DNN in binary 

classification tasks over multi-class scenarios, with test set accuracies reaching 99.22% for binary 

classifications, surpassing the 99.59% accuracy rate for multi-class classifications and demonstrating a binary 

classification loss of 1.56%, as opposed to a 0.92% loss in multi-class categorizations [28]. 

 The GBT model registered the highest accuracy at 99.1%, with 441,555 true positives, 2,235 false 

negatives, 1,863 false positives, and 62,357 true negatives. The low false positive and false negative rates 

indicate a balanced performance, with the model accurately identifying both attack and normal instances. This 

is consistent with Zhou et al.'s insights, which emphasized the equilibrium between detection efficacy and 

operational speed, employing a 70%/30% dataset split and securing a GBT outcome of 93.13% [29]. In parallel, 

research by Faker, Osama & Dogdu, and Erdogan highlighted the synergistic integration of Big Data and deep 

learning techniques to enhance the performance of intrusion detection systems, attaining a maximum accuracy 

of 97.92% [30]. 

 The KNN model demonstrated an accuracy rate of 99%, with 442,071 true positives, 1,719 false 

negatives, 1,623 false positives, and 62,597 true negatives. The results underscore the model's proficiency in 

accurately classifying and detecting dataset classes, highlighting the effectiveness of the KNN approach in 

classification tasks pertinent to network intrusion detection scenarios. This finding is mirrored in Kasongo's 

research, where the accuracy for multi-class classification using KNN improved from 70.09% with 42 features 

to 72.30% with 19 features optimized via the XGBoost method, underscoring XGBoost's contribution to 

bolstering the predictive capacity of the algorithm [31]. Rahman's investigation, utilizing standalone models 

within the Weka Explorer framework with dedicated training and test datasets, yielded approximately 100% 

accuracy [32]. Aziz's study further illustrated an enhancement in dataset performance using the NB classifier, 

elevating from 76.04% to 92.57%. 

 In essence, this comparative analysis elucidates the robust capabilities of advanced machine learning 

algorithms in refining the accuracy and precision of intrusion detection mechanisms, thereby indicating 

significant prospects for future optimizations and applications in the cybersecurity domain. 

 Strategies for Improvement: 

• Address Class Imbalance: Adjust the training process to improve the model's ability to 

correctly identify normal instances, potentially through techniques such as class weighting or oversampling 

of normal instances. 

• Feature Engineering: Enhance the feature set to better discriminate between typical and attack 

instances. 

• Model Architecture: Experiment with more profound or complex network architectures to 

improve the model's overall performance. 

 These strategies for improvement aim to address the limitations identified in the current models and 

enhance their practical applicability in real-world cybersecurity scenarios. By refining the training process, 

improving the feature set, and experimenting with different model architectures, future research can build on 

the findings of this study to develop more robust and effective intrusion detection systems. 

6. Conclusion and Future works 

 The findings from this study elucidate the effectiveness of Deep Neural Networks (DNN), Gradient 

Boost Trees (GBT), and k-Nearest Neighbors (KNN) algorithms in the realm of network intrusion detection 

and data classification. These results are instrumental in informing the development of future network 

intrusion detection systems, emphasizing the superior accuracy demonstrated by the GBT and KNN 

algorithms. Such insights pave the way for advancing detection and prevention mechanisms, potentially 

leading to the innovation of adaptive models capable of autonomously adjusting to new system behaviors or 

emerging threats. 

 Moreover, the applicability of DNN in identifying a diverse array of intrusions, including DDoS 

attacks, SQL Injections, and Zero-Day exploits, underscores the adaptability and strength of these algorithms 

within cybersecurity applications. Nonetheless, the issue of imbalanced data presents a significant challenge 

to the reliability of classification results, as disproportionate class distributions can lead to biased accuracy 

measures, often manifested in an elevated Null Accuracy. Incorporating additional evaluative metrics, such 
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as the Area Under the Curve (AUC) derived from Receiver Operating Characteristic (ROC) analysis, offers a 

more comprehensive assessment of model efficacy, enhancing the strategic development of system security 

measures. 

 The study's results indicate that the Gradient Boost Tree (GBT) model demonstrated the highest 

accuracy at 99.1%, with significant performance across various metrics. The k-Nearest Neighbors (KNN) 

model also performed exceptionally well, with an accuracy of 99%. In contrast, despite its high recall, the Deep 

Neural Network (DNN) model showed a significant number of false positives, suggesting areas for 

improvement in its application for network intrusion detection. 

 In conclusion, this research has laid a foundational framework for the application of Deep Neural 

Networks (DNN), Gradient Boost Trees (GBT), and k-Nearest Neighbors (KNN) in the domain of network 

intrusion detection, offering promising insights into their efficacy and potential areas for enhancement. The 

exploration of these algorithms, within the context of this study, reveals significant opportunities for 

advancing the precision, adaptability, and real-time capabilities of intrusion detection systems. Future 

research directions, as delineated, encompass a broad spectrum of possibilities ranging from algorithmic 

refinement and imbalanced data management to integrating machine learning models with emerging 

technologies and developing comprehensive, automated response mechanisms. These avenues hold the 

promise of elevating the robustness and efficiency of network security frameworks and contribute to the 

broader discourse on the role of advanced computational techniques in cybersecurity. As we progress, the 

continuous iteration and expansion of this research domain will undoubtedly play a pivotal role in shaping 

resilient and adaptive cybersecurity infrastructures capable of confronting the ever-evolving landscape of 

cyber threats. 

 Future research should address class imbalance, enhance feature engineering, and experiment with 

more complex model architectures to improve overall performance. Additionally, exploring the integration of 

machine learning models with real-time data processing technologies can further enhance the efficacy of 

intrusion detection systems. By building on the findings of this study, future work can develop more robust, 

adaptive, and efficient cybersecurity solutions capable of mitigating a wide array of threats. 
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Abstract: Edible flowers are a new market for horticulture plants. Beyond their 

attractive shapes and colors, this group of plants contains secondary metabolites 

that benefit human health. This study aims to investigate the growth and flower 

yield of marguerite daisies using organic fertilizer at different rates and 

frequencies. The experiment was designed as a factorial, completely randomized 

design with two factors: fertilizer rate (0.5, 1.0, and 1.5 times compared to the 

total nitrogen content in chemical fertilizer) and frequency of organic fertilizer 

application (every 30 and 15 days). Slow-release chemical fertilizer (Osmocote 

13-13-13) was used as a control. The experiment reveals that the rate of organic 

fertilizer application significantly affected the growth and flower yield of 

Marguerite daisy. Still, the frequency of organic fertilizer application did not 

significantly affect it. Application at 1.5 times yielded the most significant 

growth and flower production compared to 0.5 and 1 times of application. When 

comparing the results of organic fertilizer application with 13-13-13 chemical 

fertilizer, it was found that applying organic fertilizer 1.0 times and 1.5 times 

every 15 or 30 days resulted in similar plant growth and flower size as with the 

chemical fertilizer (p>0.05). However, chemical fertilizer produced the highest 

chlorophyll index (SPAD), accumulated flower buds, and flower blooming per 

pot (p<0.05). The plant requires more than 1.5 times the organic fertilizer 

application to achieve flower production equivalent to chemical fertilizer.  

Keywords: Fertilizer ratios; Timing of fertilizer application; Optimum fertilizer; 

Edible flower 

1. Introduction 

Flowers are rich in natural antioxidants, including flavonoids, 

anthocyanins, and many other compounds [1,2]. The demand for flowers has 

increased due to their attractive colors, appearance, and taste, leading to their 

use in the perfume and food industries. Flowers used for culinary purposes, 

known as “edible flowers,” have become more popular because of their aroma, 

texture, flavor, color, shape, and phytochemical composition [1,2]. Edible 

flowers are commonly used as garnish for salads, soups, desserts, and beverages. 

Examples of flowers used in this way include roses, marigolds, hibiscus, 

calendula, and daisy [3]. The genus Argyranthemum is a notable source of 

secondary metabolites. Maguerite daisy (Argyranthemum frutescens) exhibits 
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