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current scenario, where the COVID-19 pandemic continues to affect the world's
health. Pneumonia and Tuberculosis (TB) are always very concerning chest
diseases, and COVID-19 has also been added to this list. Chest X-rays (CXR) and
CT scans are major sources for diagnosing respiratory disorders. As CT scans
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of Thaksin University. 1. Introduction

The lungs play a vital role in the human physiological system as they
undergo expansion and contraction processes to facilitate oxygen intake and
carbon dioxide expulsion. Lung disorders encompass a range of respiratory
ailments that impact respiration's physiological structures and functions,
leading to conditions affecting the airways, lung tissues, and pulmonary
circulation. Certain respiratory infections, such as the common cold and
influenza, may result in minimal discomfort and annoyance. However, there are
other respiratory infections, such as pneumonia, TB, and lung cancer, that pose
a significant threat to life and lead to the development of severe acute respiratory
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complications. The early detection of the illnesses above during the initial stages of infection can significantly
enhance the likelihood of survival and mitigate human fatalities. Chest radiography and Computed
Tomography (CT) imaging are commonly employed diagnostic procedures for identifying and assessing these
conditions [1,2].

In recent decades, medical practitioners have encountered challenges in accurately diagnosing
diseases, leading to needless interferences in healthcare and malpractice litigation for stakeholders. Many
studies conducted through interdisciplinary collaboration between medical and engineering researchers have
extensively investigated the effectiveness of computer-aided diagnosis within the medical domain. Some
automated diagnosis systems utilized in medicine can also be classified as expert systems due to their aim of
emulating the diagnostic reasoning of medical experts. Furthermore, it is worth noting that computer-aided
detection systems utilized in medicine can effectively analyze intricate and substantial volumes of clinical data
[3]. Computer-aided detection systems have the potential to assist doctors in gaining novel perspectives on
data and utilizing acquired knowledge to enhance diagnostic precision. Because of this, the systems are
considered intelligent because they use feedback methods to improve their efficiency over time.

The most recent advancements in analysis and classification tools rely on Machine Learning (ML)
applications and DL techniques, demonstrating their effectiveness as computer-based tools. Recent
advancements and investigations in ML and DL have demonstrated that automated tools have yielded
remarkable outcomes surpassing those achieved by human identification in several application domains.
Figure 1 illustrates the sequential stages of identifying features and subsequent categorization using image
processing techniques on datasets, including CXR or CT images. ML and DL systems can effectively
incorporate and analyze vast datasets to facilitate system learning and provide accurate predictions. The main
goals of DL models are to discover and classify image properties within extensive datasets accurately. Most
contemporary thriving industries, such as healthcare, have attained very impactful discoveries through DL-
based systems [4]. DL may also be employed to develop systems capable of adequately predicting and
diagnosing diseases based on visual data. Previous studies have shown evidence of the efficacy of this
approach in the detection of TB [5-9], pneumonia [10-18], and COVID-19 [11, 15, 18-25] without the need for
human interaction. The subsequent sections of the manuscript are organized in the following manner: The
second half of the material delves into the principles and theories around convolutional neural networks.
Section 3 analyzes and examines relevant scholarly contributions within the existing body of literature. Section
4 provides an overview of the approach employed in the proposed system, while Section 5 presents a concise
summary of the findings obtained from the system.
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Figure 1. Representation of classification model based on image processing

2. Convolutional Neural Networks (CNNs) Architecture

CNNs are highly successful in recognizing and classifying features within image datasets. The
architecture consists of three distinct layers, namely convolutional, pooling, and fully-connected layers. The
convolutional approach employed by the convolutional layer facilitates the identification and extraction of the
primary features inherent in the collection of images. Convolution kernels and learnable filters facilitate the
extraction of internal image characteristics and deep vital data. To validate the output of the neurons, the dot
product between the weight of the kernel and the local region will be utilized. Equation 1 illustrates the
convolution process.
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where * represents a cross product of weight and local regions of the kernel, " is the weights of the 1st layer

it filter kernel for CNN, and y(J) is the 1st layer’s jth local region of CNN.

To use neural networks to solve complex problems, it is necessary to use a convolution operation, followed by
the utilization of an activation function, such as sigmoid, Rectified Linear Units (ReLU), and so on. The
function above generates the activation map, which encompasses the filter responses. ReLU outperforms
classic activation functions such as sigmoid and tanh due to its ability to accelerate the training of neural
networks by a factor of four, leading to reduced computational expenses. The ReLU function is defined by (2)
[26], where y is the input.

0 fory<0

g(y)={yf0ry20 (2

Similarly, the incorporation of the last layer involves the utilization of the SoftMax activation function,
which serves to enhance the efficacy of the neural network. The SoftMax function is given in (3) [26].
Zi
o©) == ©
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where zi is the raw output (logit) of class I, K is the total number of classes, and e is the base of the natural
logarithm (approximately equal to 2.71828).

In addition to including convolution layers, CNNs have pooling layers responsible for processing the
output generated by the convolution layers. The fundamental aim of the pooling layer is to decrease the
dimensions of the feature map, resulting in compression while preserving relevant information. This will lead
to decreased computation times and less overfitting. CNN attains a heightened degree of awareness through
many iterations of convolution and pooling layers, ultimately leading to the integration of fully connected
(FC) layers. The weights and biases implemented in these layers facilitate connectivity between neurons of
different layers. The fully connected layer's final layer consists of as many output neurons as there are classes
to be recognized. The categorization procedure makes use of this layer.

ResNet50 is one of the family of Residual Networks members, which overcame the problem of
vanishing gradients in deep networks and was completed using skip connections. It became possible to train
such a network efficiently, even with 50 layers. This design incorporates several residual blocks, whereby
every block is built from convolutional layers followed by batch normalization and ReLU activation to ensure
smooth propagation of the gradients. ResNet50 is typically utilized for applications where high accuracy is
needed. It can take input images of size 224x224 pixels. VGG19 was one of the early influential CNN
architectures with a deep and simple structure. It contains 16 stacked small 3x3 filter convolutional layers
followed by three fully connected layers at the tail end. Although the network is deep, applying max pooling
after stacks of convolutional layers is pretty straightforward. This architecture also accepts 224x224 pixel
images and has become a benchmark model for various image classification tasks due to reliable performance.

MobileNetV2 is designed with efficiency in mind, especially in mobile and edge device settings where
one does not have too much computational power. This architecture uses depthwise separable convolutions
that split the operation of convolutions into two parts: depthwise and pointwise. They result in an extremely
low number of parameters and computational cost. Further, MobileNetV2 uses linear bottlenecks and residual
connections important for fast information flow. Its design is applied when simultaneous high accuracy and
high-speed performance are desired without heavyweight hardware. Another crucial CNN architecture based
on dense connections within the layers is DenseNet, particularly in its use as DenResCov-19 for detecting
COVID-19. In DenseNet, every layer is given input from all layers that have been processed previously to
boost feature propagation and reduce the number of parameters needed while enhancing gradient flow.
Generally, DenseNet is composed of a series of dense blocks, the transitions of which are followed by a
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reduction in the dimensionality of the feature maps. Because of its strong feature extraction capabilities, this
architecture has proven useful in medical imaging tasks, such as detecting COVID-19 diseases.

There have been several attempts to determine whether or not DL models help predict COVID-19,
pneumonia, and TB. Due to its ability to assist in the automatic identification of viruses in medical imaging
modalities like CT scans and X-rays, DL has seen widespread use in the field of diagnostics. Patterns and
characteristics linked to COVID-19, pneumonia, and TB have been successfully identified with the help of
CNN. One proposed approach for successful DL-based COVID-19 screening is a voting-based technique
pioneered by Silva and Luz. It has achieved higher accuracy than existing state-of-the-art approaches [19].
Using multi-modality data and clinical specialists' views is crucial for ensuring accurate and efficient diagnosis
of COVID-19 since treating each CT imaging slice independently might lead to potentially misleading
outcomes [19,20]. Al-based approaches have been commonly employed for COVID-19 screening, diagnosis,
and prediction. However, there are issues with their ability to generalize due to the training and testing process
using images from the same dataset [19,21]. DL methods, specifically CNN, Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM), have been utilized to identify, diagnose, and classify COVID-
19. These approaches have demonstrated encouraging outcomes, even with limited data availability [20,21].
In addition to DL methods, many other ML techniques, such as Support Vector Machines (SVM), logistic
regression, random forests, and decision trees, have been effectively employed to identify and predict the
severity of COVID-19 [21,22]. The methodologies above have been employed to simulate patient outcomes
and forecast the degree of severity, likelihood of ICU admission, and fatality rates. These predictions are
derived from an analysis of clinical factors, blood tests, and quantitative CT parameters [22].

In general, using artificial intelligence (AI) and ML in medical imaging has improved the accuracy of
diagnosing COVID-19 by analyzing CXR and CT images. Furthermore, integrating several modalities in Al
models can enhance the intelligence of medical systems in diagnosing and predicting COVID-19 [20].
However, it is worth noting that DL has exhibited impressive results in the context of COVID-19 applications.
This is exemplified by the Truncated Inception Net, a CNN model based on DL techniques. The model above
has achieved a remarkable accuracy of 99.96% in identifying COVID-19-positive cases, distinguishing them
from patients with pneumonia and those in good condition [23]. Similarly, the Al system CAD4COVID-XRay
identified CXR images explicitly as COVID-19 pneumonia with an AUC of 81%, making it effective in low-
resource situations where diagnostic equipment is not accessible [23]. However, establishing trust in DL
models' accuracy is crucial before investing resources in developing drugs to attack protein targets identified
by the models [24]. The paper extensively examines existing literature concerning the present state and
prospective advancements in utilizing DL techniques for detecting COVID-19 [23,25].

The identification of TB using automated means has garnered considerable interest in recent years,
resulting in several scholarly articles that showcase cutting-edge DL methodologies. A thorough examination
of the existing literature has been carried out to explore the use of DL methods in identifying TB. This review
aims to support researchers in creating a Computer-Aided Diagnosis (CAD) system that can effectively
diagnose TB by employing DL classifiers. The review emphasizes the need to assess the precision of CAD
systems by employing distinct datasets for evaluation, apart from those used for training. Additionally, it
underscores the need to acknowledge the constraints present in current studies regarding methodologies and
stated accuracy to inform the development of CAD systems in subsequent research endeavors. This study
primarily centers on using DL classifiers to diagnose TB through the analysis of CXR. Numerous DL
approaches have been employed for TB screening, prediction, and diagnosis. It isn't easy to compare the
approaches due to several aspects, such as the types of datasets used, the number of image samples, the
assessment metrics employed, and the tuning of model parameters [27]. In the current era of new technologies,
ML and DL techniques are prevalent in diagnosing TB using indicators from a dataset of chest radiographs,
sputum smears, and biomarkers sources [28]. The progression of CAD adheres to a conventional structure
comprising four distinct stages: pre-processing, segmentation, feature extraction, and classification. Pre-
trained CNNs have been employed to train extensive datasets such as the RSNA, Pediatric pneumonia, and
Indiana datasets. This utilization has enhanced accuracy in TB diagnosis utilizing modality-specific DL
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models. The feature extraction process entails identifying discriminative characteristics utilized for further
investigation [27]. Furthermore, prior methodologies for TB detection have utilized pre-trained CNN models.
Additionally, TB diagnosis has been carried out using techniques such as handcrafting, ML, and DL, as
mentioned in reference [28]. The study's primary objective was to examine the CAD system, utilizing one or
more DL approaches as the classifier for TB detection [27].

In [29], the authors highlighted the significant capacity of DL to transform the diagnosis and treatment
of respiratory illnesses. DL systems demonstrate a high skill level in accurately diagnosing different lung
illnesses by analyzing complex patterns in large datasets. This advancement not only improves the process of
making medical decisions but also has the potential to influence the treatment of respiratory diseases
significantly. Moreover, using extreme learning machine approaches offers an additional approach to
identifying respiratory disorders, particularly the urgent issue of COVID-19 [30]. By utilizing the efficient
structure of Convolutional Neural Networks (CNNs), these algorithms are highly effective in extracting
essential characteristics from medical images, enabling precise illness identification. The partnership between
CNN architecture and extreme learning machines highlights a viable strategy for enhancing healthcare results,
specifically in respiratory health[30]. Authors of [31] have significantly contributed to this subject by creating
a Chest Infection Diagnostic Model. Using transfer learning and a multistage multiclass architecture, this
model improves accuracy in diagnosing a wide range of chest diseases, including common colds and severe
pneumonia. These developments give healthcare personnel more accurate diagnostic abilities, potentially
improving patient care and outcomes.

Incorporating artificial intelligence (AI) and knowledge distillation techniques in CAD systems
represents a notable advancement in diagnosing pneumonia, TB, and COVID-19 [32]. By condensing information
from intricate AI models into more efficient systems, these CAD platforms demonstrate remarkable precision
comparable to human specialists in analyzing chest radiographs. The combination of Al-driven innovation
and medical imaging holds great promise for the future of precision medicine and the accuracy of diagnostics
[32]. DL plays a crucial role in CT imaging for accurately categorizing respiratory illnesses such as pneumonia,
TB, and COVID-19. By analyzing large CT datasets, DL algorithms may detect tiny patterns that suggest
certain illnesses. This enables the early and accurate detection of diseases. This innovative method has great
promise for enhancing medical diagnostics and patient outcomes in chest illnesses [33].

The emergence of Vision Transformers signifies state-of-the-art progress in identifying pneumonia
using chest X-ray images. By harnessing sophisticated ML algorithms, Vision Transformers efficiently process
images to detect distinctive indicators of pneumonia, facilitating prompt interventions and ultimately
preserving lives. The integration of technology and healthcare highlights the profound capacity of artificial
intelligence to revolutionize illness detection and patient treatment [34].

A deep transfer learning convolutional neural network approach was proposed by Sai et al. (35),
which can distinguish between viral pneumonia, bacterial pneumonia, and COVID-19. The training dataset
consisted of 5856 chest radiographs, which were used to train a pre-trained ResNet-50V2 model for 100 epochs.
The training method resulted in an accuracy rate and test score of 94%. The attainment of a high level of
precision was aided by increasing the number of epochs and incorporating a dropout layer following the dense
layer. The CNN (Convolutional Neural Network) architecture is commonly employed for binary and
multiclass classification tasks. The training dataset consisted of 3877 CT and X-ray images, with 1917 of them
being of patients diagnosed with COVID-19. The performance of the binary classifier was evaluated, yielding
an accuracy of 99.64%.

Additionally, the classifier demonstrated a recall rate of 99.58%, precision of 99.56%, F1 score of
99.59%, and a perfect receiver operating characteristic (ROC) score of 100%. A total of 6077 images were
utilized for training the model. The number of individuals diagnosed with COVID-19 was 1917, whereas 1960
individuals were deemed healthy. Additionally, there were 2200 reported occurrences of pneumonia. The
authors reported accuracy, sensitivity, precision, F1-score, and ROC values of 98.28%, 98.25%, 98.22%, 98.23%,
and 99.87% correspondingly for the multiclass classification [36].
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To speed up the COVID-19 diagnostic process, Oguz et al. [37] employed a dataset of 1345 CT scan
images acquired from a research hospital. The images are subjected to various DL algorithms, such as ResNet-
50, ResNet-101, AlexNet, and GoogleNet, as well as additional categorization techniques like SVM, Random
Forest, Decision Trees, and others. During the pre-processing phase, the dimensions of the CT images were
decreased by implementing maximum pooling. In addition, the Rectified Linear Unit (ReLU) activation
function was included in each convolutional layer. The experimental findings indicated that ResNet-50 and
SVM outperformed the other models, achieving an accuracy rate of 96.3% and an Fl-score of 95.87%.
Nevertheless, the effectiveness of this methodology is constrained by the amount of data used and may not
demonstrate robust applicability to unfamiliar data. As the quantity of utilized classes increases, there is a
corresponding drop in the model's accuracy. Hussain et al. [38] presented their findings, showcasing the
development of a deep Convolutional Neural Network model named 'CoroDet," consisting of 22 layers. The
dataset utilized in this study comprised a total of 7390 images, with 2843 images representing COVID-19
patients, 3108 images representing normal cases, and 1439 images representing instances of pneumonia caused
by both viral and bacterial infections. The deep Convolutional Neural Network model was utilized for three
distinct class classifications: COVID-19, Pneumonia-Bacteria, and Normal. A four-class classification, including
COVID-19, Pneumonia-Bacteria, Normal, and Pneumonia-Viral, was also performed. Notably, no preprocessing of
the data was conducted before these classifications. The methodology devised by the researchers resulted in
an accuracy rate of 99.1% for classifiers with two classes, 94.2% for classifiers with three classes, and 91.2% for
classifiers with four classes. Nevertheless, these conclusions may be enhanced by the augmentation of data,
equalizing class instances, and implementing data pre-processing techniques to mitigate noise.

3. Materials and Methods

This research aims to construct a DL framework that can accurately categorize COVID-19, Pneumonia,
and TB into normal and pathological categories. The suggested system employs a DL convolutional neural
network. Its main use is image categorization and analysis, where each network layer applies a distinct set of
filters. The outcomes of each layer are obtained by the fusion of a range of 100 to 1000 filters. The results are
ultimately transmitted to the subsequent neural network layer. Figure 2 illustrates the suggested methodology
for the detection model, which aims to distinguish normal and infected cases for each illness. The training
process utilizes the Keras and Tensorflow software libraries. The proposed model would incorporate many
stages, including dataset acquisition, partitioning, preprocessing, training, and testing/evaluation.

Classify the dataset
Load CXR Dataset into normal and
Infected Images

Train the Images with
Tensorflow and Keras

A 4

Convert trained Extract the Image

Load the model . . from the Trained
images into model
dataset

v

Evaluate the Classify and display
proposed model the results

Figure 2. Proposed system’s framework
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Figure 3 shows the block diagram of the proposed system. The proposed model takes as input X-ray
samples of images associated with each detected disease. The first convolutional layer receives image input,
which is processed using a specified activation function. The pooling layer is introduced successively after the
activation function layer. The utilization of a max pooling layer serves the purpose of diminishing the spatial
dimensions of the representation. The suggested model includes a secondary convolutional layer that follows
the same layer sequence as the first layer, including an activation layer, a pooling layer, and a max-pooling layer.

MobileNetV2 —

| »
*.| Train " VGG19 Model
Data Model ™

. Evaluate
Dataset (—» Data split Pre-processing ResNets0 [  Generated

h% Test b—;

DenResCov-19 [

Figure 3. Block diagram of the proposed system

In the initial stage, the input images are subjected to a random partitioning method, whereby the data
image is divided into 80% for training purposes and 20% for validation. Pre-processing techniques such as
normalization and scaling are also applied to the images using relevant functions. Then, in the second and
third stages, DL algorithms are deployed. The second step involves the process of feature extraction, which is
achieved by employing ResNet50, VGG19, MobilenetV2, DenResCov-19, and CNN algorithms. Employing a
fully linked network is utilized at the image categorization stage.

The architecture of the CNN, as outlined in section 2 and depicted in figure 4, comprises an input
layer, an output layer, and hidden layers that are formed of convolutional layers with Rectified Linear Units
(ReLU), pooling layers, and fully connected layers. The input datasets for this network consist of X-ray images
representing both normal and sick occurrences for each illness, along with three RGB channels. The
dimensions of the chosen input data set are 224 x 224. The provided dataset is inputted into the first layer,
known as the convolutional layer, which utilizes the Rectified Linear Unit (ReLU) activation function. The
initial layer employs a kernel with the size of 224 x 224 and produces 32 output channels to diminish the
feature map. Additionally, it generates 32 output channels to further lower the feature map to a size of 112.
The maximum values for each window will be documented when filtered using the stride. The procedure
above will be executed for every individual dataset of filtered images. The third layer of the network consists
of a convolutional layer with a kernel size of 112 x 112, followed by a pooling layer with a kernel size of 7 x 7,
which precedes the fully connected layer. Furthermore, the network incorporates a flattened layer that is fully
linked. The SoftMax function incorporates a fully linked layer into the model architecture. The ultimate layer
will be employed to make predictions regarding the classification of an image, namely whether it is normal or
contaminated with a disease.
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Figure 4. CNN model architecture used for the proposed system

3.1 Dataset

In addition to healthy examples, X-ray images of COVID-19, pneumonia, and TB were accessible and
collected from dependable sources [38-40]. Figure 5 presents X-ray image samples utilized in this work,
showcasing (A) a normal case, (B) a case of COVID-19, (C) a case of pneumonia, and (D) a case of TB. The
COVID-19 dataset comprises 13,805 images, encompassing both normal and diseased cases. These images are
further separated into 11,044 for training and 2,761 for testing purposes. The dataset consists of a total of 5840
images, encompassing both normal and infected instances of pneumonia. These images are further separated
into 4672 images for training and 1168 images for testing purposes. The dataset used in this study consists of
a total of 4200 images, encompassing both normal and infected instances of pneumonia. These images have
been separated into two subsets: 3360 images for training purposes and 840 images for testing purposes. Table
1 presents the specific information of the dataset stated before.

Severe abdominal pain_ Diagnosis? Swipe for explanation

(b) © (d)

Figure 5. X-ray image samples (a) normal (b) COVID-19 (c) pneumonia (d) tuberculosis

3.2 Preprocessing and Data Augmentation

The datasets comprise X-ray images with varying resolutions. In contrast, the CNN models require
the image dataset to adhere to specific size requirements. Consequently, the X-ray images within the dataset
were uniformly scaled to dimensions of 224 * 224. Decreasing the dimensions of the input image has the effect
of expediting the image processing procedure, hence hastening the model's performance for the specific
associated job. The primary concern associated with image datasets is overfitting. Data augmentation is a
widely employed strategy in ML, wherein small alterations are introduced to an image during each training
epoch. This approach is favored due to its ability to substantially augment the volume of training data and
effectively mitigate the issue of overfitting. Several augmentation techniques were employed in this study,
encompassing image rotation, range shearing, range zooming, and horizontal flips.

Using a random splitting method, the dataset was divided into two subsets, namely the validation
subset and the training subset. The validation subset accounted for 20% of the data, while the training subset
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accounted for 80%. This division was implemented to ensure that the variability included in the X-ray images
adhered to the required parameters for training the proposed model. The CNN model's ability to leverage
additional data beyond the original dataset is essential for attaining high levels of accuracy.

Table 1. Details of Dataset of COVID-19, pneumonia, and tuberculosis used for this research study

Traini Testi Total
Dataset of Diseases Types of Images ratning estng ot
Images Images Images
Normal 8152 2038 10,190
COVID 19 [38] COVID 19 Infected 2892 723 3,615
Total 11044 2761 13805
Normal 1260 315 1,575
. Pneumonia Infected 3412 853 4,265
Pneumonia [39]
Total 4672 1168 5840
Normal 2800 700 3500
Tuberculosis [40] Tuberculosis Infected 560 140 700
Total 3360 840 4200

3.3 System Realization

The present study employs an Android application developed internally utilizing the Arduino
integrated development environment (IDE). The DL model was deployed on the web using Tensorflowjs,
while the same model was deployed on an Android-based application using the Tensorflow-Lite APIL. The
system underwent testing using datasets to verify its ability to recognize both normal and disease-infected
instances and assess the performance of the developed model software program, which operated as
anticipated. Figure 6 (a), (b), and (c) illustrate the Android applications that were built for this study.

4. Results and Discussion

The present study aimed to evaluate the performance of four different CNN models, MobileNetv2,
VGG19, ResNet50, and DenResCov-19, in identifying COVID-19, Pneumonia, and TB. The models underwent
training, during which their precision and losses were evaluated. Subsequently, the test efficacy was measured
and compared to findings from other studies. In all experimental trials, the parameter values employed for
the number of epochs, batch size, and dropout were 50, 32, and 0.5, respectively. The dataset was partitioned
into 80% training and 20% testing sets. The experimental hardware consisted of an Intel i7-10750H processor.
The GPU is Nvidia GTX 1660Ti, and RAM is 16GB.

The dataset images were classified into two groups, normal and afflicted with illness, using our
suggested system that underwent training for 20 epochs. The accuracy, loss curves, and confusion matrix of
the COVID-19 detection model using MobileNetv2, VGG19, ResNet50, and DenResCov-19 are depicted in
Figures 7(a), (b), (c), and (d) accordingly. These figures illustrate the models' performance throughout the
training and validation phases, spanning a total of 20 epochs. Likewise, the outcomes for Pneumonia and TB
are demonstrated by 8(a), (b), (c), (d) and 9(a), (b), (c), (d).
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Figure 6. Android App developed for the realization of the proposed system

Table 2 presents comprehensive data about the accuracy and loss metrics for training and validation
phases over 20 epochs for each model of COVID-19, Pneumonia, and TB.

Table 2. Accuracy % and loss in training and validation over 50 epochs of detection model using MobileNetV2,
VGG19, ResNet50, DenResCov-19

Accuracy % Loss
Disease Model Name with the with the with the with the
Name training oy L. .. g e
validation set training dataset validation set
dataset
MobileNetV2 99.36 97.39 0.0219 0.0729
VGG19 97.96 94.97 0.0619 0.0128
COVID-19 Resnet50 99.79 98.37 0.0094 0.0556
DenResCov-19 99.24 97.72 0.029 0.068
MobileNetV2 99.12 96.92 0.0309 0.1004
. VGG 19 98.39 96.58 0.0512 0.1023
Pneumonia Resnet50 99.17 97.09 0.0271 0.0852
DenResCov-19 98.42 96.23 0.0473 0.0934
MobileNetV2 99.89 99.4 0.0011 0.0154
Tuberculosis VGG 19 99.82 99.4 0.0075 0.0207
Resnet50 99.88 99.4 0.0012 0.0181
DenResCov-19 99.77 99.29 0.0023 0.0195

The loss curves in Figures 7, 8, and 9 demonstrate a minimal discrepancy between the training and
validation loss curves, suggesting that the models have achieved satisfactory convergence. Furthermore, no
indications of overfitting were seen throughout the training and validation processes. The confusion matrix is
employed to represent the system's performance metrics. Additional assessment metrics can be developed
using the available data to emphasize the system's performance being discussed. The confusion matrix yields
a True Positive outcome when the system accurately classifies an infected case as the correct disease. A False
Positive outcome occurs when the system incorrectly identifies a normal case as one of the disease cases. True
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Negative is achieved when the system correctly classifies a normal case as normal, indicating the absence of
disease. Lastly, a False Negative outcome arises when the system misclassifies an infected case as normal.
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Figure 7. Accuracy curve, loss curves, confusion matrix of COVID-19 detection model using (a)MobileNetv2
(b)VGG19 (c)ResNet50 (d)DenResCov-19

An evaluation was undertaken to assess the performance of the classification model constructed in
this study. This evaluation involved the consideration of several derived parameters: True Positive Rate (TPR),
True Negative Rate (TNR), False Negative Rate (FNR), and False Positive Rate (FPR) as specified in (4-7) [41].
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Additionally, performance metrics such as precision, accuracy, and F1 score, reported as in (8-10) [42], were
also considered. The additional metrics, recall and specificity, are equivalent to the TPR described in (4) and

the TNR outlined in (6).
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Figure 8. Accuracy curve, loss curves, confusion matrix of Pneumonia detection model using (a)MobileNetv2
(b)VGG19 (c)ResNet50 (d)DenResCov-19



ASEAN ]. Sci. Tech. Report. 2025, 28(1), e253662.

13 of 18

Train_accuracy vs Validation_accuracy

Training_Loss vs Validation_Loss

Confusion Matrix

100 035 — wain_loss
— val_loss
0.30 2 600
0.98 - g
% | True Neg False Pos
5 137 3 500
0.96 5
2
o 8
.20 s 400
2 s
3 3
015 g - 300
2
010 _
0.90 - g False Neg True Pos 200
I 2 698
0.05 2
0.88 - .
—— train_acc 100
— val_acc 0.00-
0.86 ' U i i ' U i '
10 20 30 40 50 10 20 30 40 50 Tuberculosis Normal
Num of Epochs Num of Epochs Predicted Values
Train_accuracy vs Validation_accuracy Training_Loss vs Validation_Loss Confusion Matrix
1.00 — train_loss
08 — val_loss
0.98 @ 600
5 True Neg False Pos
096 i =) 9 500
0.6 H
y =
L 094 i
3 2 - 400
£ 092~ a =
3 g 04 Z
2 - g - 300
< 090- < ‘
088 0z E" | False Neg True Pos - 200
o g 1 699
0.86 100
— train_acc 3
0.84 —— val_acc 0.0
10 20 30 @ 50 10 20 30 4 50 Tuberculosis Normal
Num of Epochs Num of Epochs Predicted Values
Train_accuracy vs Validation_accuracy Training_Loss vs Validation_Loss Confusion Matrix
= - - - 700
1.00 —— train_loss
0.2 — val_loss
n 600
098 % True Neg False Pos
) £ 135 5
20 & 500
=)
Iy oS H - 400
e @ 2
3 -1 i
g - ] 300
~ 094 0.10 <
= False eg Tue pos -200
0.05 o 700
0.92 05 g
—— train_acc - 100
— val_acc .00
0.90 ' 0 ' ' 0 0 0 -0
10 20 30 a0 50 10 20 30 40 50 Tuberculosis Normal
Num of Epochs Num of Epochs Predicted Values
Train_accuracy vs Validation_accuracy Training_Loss vs Validation_Loss Confusion Matrix
0.40 -
1.00 —— train_loss
- — val_loss
0.98 s 2 600
g
. R True Neg False Pos
0.96 0.30 g 135 5 500
H
.25 A
E] 400
@ 020 K
3 § 300
015 g
0.88 K False Neg True Fos -200
E- 1 69
0.86 E
1,86 - 05 - -
—— train_acc 100
0.84 — val_acc 0.00
10 20 30 a 50 10 20 30 40 50 Tuberculosis

Num of Epoachs

Num of Epochs

(d)

Predicted Values

Figure 9. Accuracy curve, loss curves, confusion matrix of TB detection model using (a) MobileNetv2 (b)
VGG19 (c) ResNet50 (d) DenResCov-19
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Tne
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* 1c1 *
F1 Score — 2*Precision*Recall (10)

Precision + Recall

The assessment of precision functions as a method to measure the efficacy and feasibility of the
proposed system. The precision metric is utilized to determine the true proportion of positive predictions. The
recall measure, or the sensitivity measure, evaluates the proportion of correct predictions generated by the
suggested model. The F1-score is commonly defined in academic literature as the inverse mean of the recall
and accuracy metrics, which are widely employed for assessing the performance of a model. The equations
above can provide a deeper understanding of the suggested system. The classification report of the suggested
system is presented in Table 3.

According to the data shown in Table 3, it is evident that the ResNet50 model architecture outperforms
the other models utilized in terms of performance. The ResNet50 model achieves an accuracy of 99.79% and
an F1 score of 96.89% for COVID-19, while for pneumonia classification, it attains an accuracy of 99.17% and
an F1 score of 94.52%. The performance of TB diagnosis using the MobileNetV2 and ResNet50 models
exhibited nearly identical levels of accuracy, achieving a rate of 99.88%. The F1 score, which measures the
balance between precision and recall, also reached 99.64%. One notable discovery in our research is the
comparison of the efficacy of different models using the provided dataset.

Table 3. Performance evaluation of different measures for the proposed system

Measures

2 o o 2 2 )
_§ § Model Name o~ o & v 2 § § e 2 f & g
A & £ = B S SEE SEE @
& 7 @ C%-‘ %) o

MobileNetV2 0.9530 0.0470 09814 0.0186 0.9477  0.9530 0.9814 0.9503

VGG19 0.8769 0.1231 09755 0.0245 09269  0.8769 0.9755 0.9012

Resnet50 0.9710 0.0290 09882 0.0118 0.9669  0.9710 0.9882 0.9689

DenResCov-19 0.9640 0.0360 09818 0.0182 0.9496  0.9640 0.9818 0.9568
MobileNetV2 0.9460 0.0540 09777 0.0223 0.9401 0.9460 0.9777 0.9430
VGG 19 0.9333 0.0667 09777 0.0223 0.9393  0.9333 0.9777 0.9363
Resnet50 0.9302 0.0698 09859 0.0141 09607  0.9302 0.9859 0.9452
DenResCov-19 0.9429 0.0571 09695 0.0305 09195  0.9429 0.9695 0.9310
MobileNetV2 0.9971 0.0029 09786 0.0214 0.9957  0.9971 0.9786 0.9964
VGG 19 0.9986 0.0014 09714 0.0286 0.9943  0.9986 0.9714 0.9964
Resnet50 1.0000 0.0000 09643 0.0357 0.9929 1.0000 0.9643 0.9964
DenResCov-19 0.9986 0.0014 09643 0.0357 0.9929  0.9986 0.9643 0.9957

Tuberculosis Pneumonia COVID-19
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5. Discussion on Clinical Applicability

The proposed models, particularly ResNet50 and MobileNetV2, are now ready for application in
clinical workflows to aid radiologists in determining these diseases quickly and efficiently: COVID-19,
pneumonia, and tuberculosis. They have high accuracies at 99.79% for COVID-19 and 99.88% for tuberculosis,
and these models might become a trustworthy tool for early detection, thus allowing for earlier management
of patients and their treatments. With incredibly high accuracy rates obtained by the proposed models, they
can be valuable tools supporting a radiologist's decision to make faster and more accurate diagnoses. This
could become valuable where expertise by radiologists is fewer and farther between. The models used in this
study- the MobileNetV2 especially- are highly computationally efficient and may be deployed even within
resource-constrained environments. Where medical and CT scan professionals or units are difficult to access,
the system may be a cost-effective and practical solution for disease detection and diagnosis by using only X-
ray machines in a less densely populated or deprived area. The interface of proposed models into a mobile
app will afford many telemedicine opportunities in which service providers can assess the X-rays taken by
patients remotely. This could be particularly useful in the COVID-19 pandemic, where telemedicine diagnosis
reduces contact exposure to healthcare workers and patients. Although these models demonstrate high
performance on the datasets used here, the clinical environment may present a challenge, including noisiness,
poor quality, or incompleteness of the X-ray images. Testing and validating the system in the clinical
environment will be necessary to ascertain that the system can handle the variability associated with such
situations.

6. Conclusions

Besides the ongoing COVID-19 pandemic, timely detection of diseases such as pneumonia and TB
positively impacts patient mortality rates. To enhance the quality of healthcare services while minimizing
expenses and reaction time, creating a mobile application that incorporates Convolutional Neural Networks
and an Ensemble of DL Architectures is imperative. This application would be utilized inside energy-efficient
medical devices to facilitate the automated identification of illnesses. An in-house mobile application of
convolutional neural networks was developed using four different DL architecture models (MobileNetV2,
ResNet50, VGG19, and DenResCov-19). These models were trained on COVID-19, pneumonia, and TB images
from an open-access dataset. The models were utilized to classify the CXR image and discern the presence of
COVID-19, pneumonia, TB, and healthy individuals. When evaluating several models for the detection of
COVID-19, it was shown that the ResNet50 model architecture had superior performance, achieving an
accuracy of 99.79%, an F1 score of 96.89%, and a precision of 96.69%. The ResNet50 model architecture
demonstrates superior performance compared to previous models utilized in the detection of pneumonia,
achieving an accuracy of 99.17%, an F1 score of 94.52%, and a precision of 96.07%. The performance of TB
detection using the MobileNetV2 and ResNet50 models exhibited similar results, achieving an accuracy of
99.88% and 99.64% F1 score. Additionally, the precision rates for the MobileNetV2 and ResNet50 models were
99.57% and 99.29%, respectively. One of the noteworthy outcomes of our study is the comparison of the
effectiveness of several models on the provided dataset. The entire data confirmed the proposed technique's
efficacy and efficiency. In the foreseeable future, there will be a comprehensive collection of CT scan data,
including data on diverse lung illnesses, to train the model and enhance the healthcare industry. All data sets
were subsamples of specific sources, such as publicly available repositories like Kaggle, which would
introduce geographic and institutional biases, potentially limiting the broader generalisability of the models
to diverse populations or healthcare settings. For instance, the data can reflect particular demographic groups
or medical institutions and thus may not represent more general populations in other parts of the world.
Furthermore, validation in real-world clinical settings remains necessary since the proposed models were
stringently tested on these datasets. Models might face noisy, low-quality, or ambiguous X-ray images in
practical applications not found in this study's clean and preprocessing datasets. Testing in actual clinical
environments would thus better give insight into the robustness and applicability of models to real-world
challenges and variability in image quality.
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