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Abstract: Testing, diagnosis, and treatment must be done quickly in the 

current scenario, where the COVID-19 pandemic continues to affect the world's 

health. Pneumonia and Tuberculosis (TB) are always very concerning chest 

diseases, and COVID-19 has also been added to this list. Chest X-rays (CXR) and 

CT scans are major sources for diagnosing respiratory disorders. As CT scans 

are a little bit costlier and take more time, as well as expose patients to mild 

radiation, the use of CXR is increasing for the diagnosis of chest diseases. This 

study uses CXR images to accurately identify diseases using the developed 

MobileNetV2, ResNet50, VGG19, and DenResCov-19 Convolutional Neural 

Network (CNN). The models were analyzed and tested using the publicly 

available 13805, 5840, and 4200 chest x-ray images for COVID-19, pneumonia, 

and TB cases. The in-house mobile app employs a variety of deep-learning 

models to identify diseases from chest X-rays. With 99.79% accuracy and 96.89% 

F1-score, ResNet50 is the best model architecture for COVID-19 classification. 

The ResNet50 pneumonia classification model was 99.17% accurate and had an 

F1-score of 94.52%. With 99.88% TB detection accuracy and 99.64% F1-score, 

MobileNetV2 and ResNet50 were equivalent. Comparing model efficacy on the 

dataset was fascinating. 

Keywords:  CNN, COVID-19, Pneumonia, Radiography, Tuberculosis  

1. Introduction 

The lungs play a vital role in the human physiological system as they 

undergo expansion and contraction processes to facilitate oxygen intake and 

carbon dioxide expulsion. Lung disorders encompass a range of respiratory 

ailments that impact respiration's physiological structures and functions, 

leading to conditions affecting the airways, lung tissues, and pulmonary 

circulation. Certain respiratory infections, such as the common cold and 

influenza, may result in minimal discomfort and annoyance. However, there are 

other respiratory infections, such as pneumonia, TB, and lung cancer, that pose 

a significant threat to life and lead to the development of severe acute respiratory 
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complications. The early detection of the illnesses above during the initial stages of infection can significantly 

enhance the likelihood of survival and mitigate human fatalities. Chest radiography and Computed 

Tomography (CT) imaging are commonly employed diagnostic procedures for identifying and assessing these 

conditions [1,2]. 

In recent decades, medical practitioners have encountered challenges in accurately diagnosing 

diseases, leading to needless interferences in healthcare and malpractice litigation for stakeholders. Many 

studies conducted through interdisciplinary collaboration between medical and engineering researchers have 

extensively investigated the effectiveness of computer-aided diagnosis within the medical domain. Some 

automated diagnosis systems utilized in medicine can also be classified as expert systems due to their aim of 

emulating the diagnostic reasoning of medical experts. Furthermore, it is worth noting that computer-aided 

detection systems utilized in medicine can effectively analyze intricate and substantial volumes of clinical data 

[3]. Computer-aided detection systems have the potential to assist doctors in gaining novel perspectives on 

data and utilizing acquired knowledge to enhance diagnostic precision. Because of this, the systems are 

considered intelligent because they use feedback methods to improve their efficiency over time. 

The most recent advancements in analysis and classification tools rely on Machine Learning (ML) 

applications and DL techniques, demonstrating their effectiveness as computer-based tools. Recent 

advancements and investigations in ML and DL have demonstrated that automated tools have yielded 

remarkable outcomes surpassing those achieved by human identification in several application domains. 

Figure 1 illustrates the sequential stages of identifying features and subsequent categorization using image 

processing techniques on datasets, including CXR or CT images. ML and DL systems can effectively 

incorporate and analyze vast datasets to facilitate system learning and provide accurate predictions. The main 

goals of DL models are to discover and classify image properties within extensive datasets accurately. Most 

contemporary thriving industries, such as healthcare, have attained very impactful discoveries through DL-

based systems [4]. DL may also be employed to develop systems capable of adequately predicting and 

diagnosing diseases based on visual data. Previous studies have shown evidence of the efficacy of this 

approach in the detection of TB [5-9], pneumonia [10-18], and COVID-19 [11, 15, 18-25] without the need for 

human interaction. The subsequent sections of the manuscript are organized in the following manner: The 

second half of the material delves into the principles and theories around convolutional neural networks. 

Section 3 analyzes and examines relevant scholarly contributions within the existing body of literature. Section 

4 provides an overview of the approach employed in the proposed system, while Section 5 presents a concise 

summary of the findings obtained from the system. 

 

Figure 1. Representation of classification model based on image processing  

2. Convolutional Neural Networks (CNNs) Architecture 

CNNs are highly successful in recognizing and classifying features within image datasets. The 

architecture consists of three distinct layers, namely convolutional, pooling, and fully-connected layers. The 

convolutional approach employed by the convolutional layer facilitates the identification and extraction of the 

primary features inherent in the collection of images. Convolution kernels and learnable filters facilitate the 

extraction of internal image characteristics and deep vital data. To validate the output of the neurons, the dot 

product between the weight of the kernel and the local region will be utilized.  Equation 1 illustrates the 

convolution process. 
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To use neural networks to solve complex problems, it is necessary to use a convolution operation, followed by 

the utilization of an activation function, such as sigmoid, Rectified Linear Units (ReLU), and so on. The 

function above generates the activation map, which encompasses the filter responses. ReLU outperforms 

classic activation functions such as sigmoid and tanh due to its ability to accelerate the training of neural 

networks by a factor of four, leading to reduced computational expenses. The ReLU function is defined by (2) 

[26], where y is the input. 
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Similarly, the incorporation of the last layer involves the utilization of the SoftMax activation function, 

which serves to enhance the efficacy of the neural network. The SoftMax function is given in (3) [26].   
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where zi is the raw output (logit) of class I, K is the total number of classes, and e is the base of the natural 

logarithm (approximately equal to 2.71828). 

In addition to including convolution layers, CNNs have pooling layers responsible for processing the 

output generated by the convolution layers. The fundamental aim of the pooling layer is to decrease the 

dimensions of the feature map, resulting in compression while preserving relevant information. This will lead 

to decreased computation times and less overfitting. CNN attains a heightened degree of awareness through 

many iterations of convolution and pooling layers, ultimately leading to the integration of fully connected 

(FC) layers. The weights and biases implemented in these layers facilitate connectivity between neurons of 

different layers. The fully connected layer's final layer consists of as many output neurons as there are classes 

to be recognized. The categorization procedure makes use of this layer. 

ResNet50 is one of the family of Residual Networks members, which overcame the problem of 

vanishing gradients in deep networks and was completed using skip connections. It became possible to train 

such a network efficiently, even with 50 layers. This design incorporates several residual blocks, whereby 

every block is built from convolutional layers followed by batch normalization and ReLU activation to ensure 

smooth propagation of the gradients. ResNet50 is typically utilized for applications where high accuracy is 

needed. It can take input images of size 224x224 pixels. VGG19 was one of the early influential CNN 

architectures with a deep and simple structure. It contains 16 stacked small 3x3 filter convolutional layers 

followed by three fully connected layers at the tail end. Although the network is deep, applying max pooling 

after stacks of convolutional layers is pretty straightforward. This architecture also accepts 224x224 pixel 

images and has become a benchmark model for various image classification tasks due to reliable performance.  

MobileNetV2 is designed with efficiency in mind, especially in mobile and edge device settings where 

one does not have too much computational power. This architecture uses depthwise separable convolutions 

that split the operation of convolutions into two parts: depthwise and pointwise. They result in an extremely 

low number of parameters and computational cost. Further, MobileNetV2 uses linear bottlenecks and residual 

connections important for fast information flow. Its design is applied when simultaneous high accuracy and 

high-speed performance are desired without heavyweight hardware. Another crucial CNN architecture based 

on dense connections within the layers is DenseNet, particularly in its use as DenResCov-19 for detecting 

COVID-19. In DenseNet, every layer is given input from all layers that have been processed previously to 

boost feature propagation and reduce the number of parameters needed while enhancing gradient flow. 

Generally, DenseNet is composed of a series of dense blocks, the transitions of which are followed by a 



ASEAN J. Sci. Tech. Report. 2025, 28(1), 4 of 18253662.ASEAN J. Sci. Tech. Report. 2025, 28(1), e253662 4 of 18 
 

 

reduction in the dimensionality of the feature maps. Because of its strong feature extraction capabilities, this 

architecture has proven useful in medical imaging tasks, such as detecting COVID-19 diseases. 

There have been several attempts to determine whether or not DL models help predict COVID-19, 

pneumonia, and TB. Due to its ability to assist in the automatic identification of viruses in medical imaging 

modalities like CT scans and X-rays, DL has seen widespread use in the field of diagnostics. Patterns and 

characteristics linked to COVID-19, pneumonia, and TB have been successfully identified with the help of 

CNN. One proposed approach for successful DL-based COVID-19 screening is a voting-based technique 

pioneered by Silva and Luz. It has achieved higher accuracy than existing state-of-the-art approaches [19]. 

Using multi-modality data and clinical specialists' views is crucial for ensuring accurate and efficient diagnosis 

of COVID-19 since treating each CT imaging slice independently might lead to potentially misleading 

outcomes [19,20]. AI-based approaches have been commonly employed for COVID-19 screening, diagnosis, 

and prediction. However, there are issues with their ability to generalize due to the training and testing process 

using images from the same dataset [19,21]. DL methods, specifically CNN, Recurrent Neural Networks 

(RNN), and Long Short-Term Memory (LSTM), have been utilized to identify, diagnose, and classify COVID-

19. These approaches have demonstrated encouraging outcomes, even with limited data availability [20,21]. 

In addition to DL methods, many other ML techniques, such as Support Vector Machines (SVM), logistic 

regression, random forests, and decision trees, have been effectively employed to identify and predict the 

severity of COVID-19 [21,22]. The methodologies above have been employed to simulate patient outcomes 

and forecast the degree of severity, likelihood of ICU admission, and fatality rates. These predictions are 

derived from an analysis of clinical factors, blood tests, and quantitative CT parameters [22]. 

In general, using artificial intelligence (AI) and ML in medical imaging has improved the accuracy of 

diagnosing COVID-19 by analyzing CXR and CT images. Furthermore, integrating several modalities in AI 

models can enhance the intelligence of medical systems in diagnosing and predicting COVID-19 [20]. 

However, it is worth noting that DL has exhibited impressive results in the context of COVID-19 applications. 

This is exemplified by the Truncated Inception Net, a CNN model based on DL techniques. The model above 

has achieved a remarkable accuracy of 99.96% in identifying COVID-19-positive cases, distinguishing them 

from patients with pneumonia and those in good condition [23]. Similarly, the AI system CAD4COVID-XRay 

identified CXR images explicitly as COVID-19 pneumonia with an AUC of 81%, making it effective in low-

resource situations where diagnostic equipment is not accessible [23]. However, establishing trust in DL 

models' accuracy is crucial before investing resources in developing drugs to attack protein targets identified 

by the models [24]. The paper extensively examines existing literature concerning the present state and 

prospective advancements in utilizing DL techniques for detecting COVID-19 [23,25]. 

The identification of TB using automated means has garnered considerable interest in recent years, 

resulting in several scholarly articles that showcase cutting-edge DL methodologies. A thorough examination 

of the existing literature has been carried out to explore the use of DL methods in identifying TB. This review 

aims to support researchers in creating a Computer-Aided Diagnosis (CAD) system that can effectively 

diagnose TB by employing DL classifiers. The review emphasizes the need to assess the precision of CAD 

systems by employing distinct datasets for evaluation, apart from those used for training. Additionally, it 

underscores the need to acknowledge the constraints present in current studies regarding methodologies and 

stated accuracy to inform the development of CAD systems in subsequent research endeavors. This study 

primarily centers on using DL classifiers to diagnose TB through the analysis of CXR. Numerous DL 

approaches have been employed for TB screening, prediction, and diagnosis. It isn't easy to compare the 

approaches due to several aspects, such as the types of datasets used, the number of image samples, the 

assessment metrics employed, and the tuning of model parameters [27]. In the current era of new technologies, 

ML and DL techniques are prevalent in diagnosing TB using indicators from a dataset of chest radiographs, 

sputum smears, and biomarkers sources [28]. The progression of CAD adheres to a conventional structure 

comprising four distinct stages: pre-processing, segmentation, feature extraction, and classification. Pre-

trained CNNs have been employed to train extensive datasets such as the RSNA, Pediatric pneumonia, and 

Indiana datasets. This utilization has enhanced accuracy in TB diagnosis utilizing modality-specific DL 
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models. The feature extraction process entails identifying discriminative characteristics utilized for further 

investigation [27]. Furthermore, prior methodologies for TB detection have utilized pre-trained CNN models. 

Additionally, TB diagnosis has been carried out using techniques such as handcrafting, ML, and DL, as 

mentioned in reference [28]. The study's primary objective was to examine the CAD system, utilizing one or 

more DL approaches as the classifier for TB detection [27]. 

In [29], the authors highlighted the significant capacity of DL to transform the diagnosis and treatment 

of respiratory illnesses. DL systems demonstrate a high skill level in accurately diagnosing different lung 

illnesses by analyzing complex patterns in large datasets. This advancement not only improves the process of 

making medical decisions but also has the potential to influence the treatment of respiratory diseases 

significantly. Moreover, using extreme learning machine approaches offers an additional approach to 

identifying respiratory disorders, particularly the urgent issue of COVID-19 [30]. By utilizing the efficient 

structure of Convolutional Neural Networks (CNNs), these algorithms are highly effective in extracting 

essential characteristics from medical images, enabling precise illness identification. The partnership between 

CNN architecture and extreme learning machines highlights a viable strategy for enhancing healthcare results, 

specifically in respiratory health[30]. Authors of [31] have significantly contributed to this subject by creating 

a Chest Infection Diagnostic Model. Using transfer learning and a multistage multiclass architecture, this 

model improves accuracy in diagnosing a wide range of chest diseases, including common colds and severe 

pneumonia. These developments give healthcare personnel more accurate diagnostic abilities, potentially 

improving patient care and outcomes. 

Incorporating artificial intelligence (AI) and knowledge distillation techniques in CAD systems 

represents a notable advancement in diagnosing pneumonia, TB, and COVID-19 [32]. By condensing information 

from intricate AI models into more efficient systems, these CAD platforms demonstrate remarkable precision 

comparable to human specialists in analyzing chest radiographs. The combination of AI-driven innovation 

and medical imaging holds great promise for the future of precision medicine and the accuracy of diagnostics 

[32]. DL plays a crucial role in CT imaging for accurately categorizing respiratory illnesses such as pneumonia, 

TB, and COVID-19. By analyzing large CT datasets, DL algorithms may detect tiny patterns that suggest 

certain illnesses. This enables the early and accurate detection of diseases. This innovative method has great 

promise for enhancing medical diagnostics and patient outcomes in chest illnesses [33]. 

The emergence of Vision Transformers signifies state-of-the-art progress in identifying pneumonia 

using chest X-ray images. By harnessing sophisticated ML algorithms, Vision Transformers efficiently process 

images to detect distinctive indicators of pneumonia, facilitating prompt interventions and ultimately 

preserving lives. The integration of technology and healthcare highlights the profound capacity of artificial 

intelligence to revolutionize illness detection and patient treatment [34]. 

A deep transfer learning convolutional neural network approach was proposed by Sai et al. (35), 

which can distinguish between viral pneumonia, bacterial pneumonia, and COVID-19. The training dataset 

consisted of 5856 chest radiographs, which were used to train a pre-trained ResNet-50V2 model for 100 epochs. 

The training method resulted in an accuracy rate and test score of 94%. The attainment of a high level of 

precision was aided by increasing the number of epochs and incorporating a dropout layer following the dense 

layer. The CNN (Convolutional Neural Network) architecture is commonly employed for binary and 

multiclass classification tasks. The training dataset consisted of 3877 CT and X-ray images, with 1917 of them 

being of patients diagnosed with COVID-19. The performance of the binary classifier was evaluated, yielding 

an accuracy of 99.64%. 

Additionally, the classifier demonstrated a recall rate of 99.58%, precision of 99.56%, F1 score of 

99.59%, and a perfect receiver operating characteristic (ROC) score of 100%. A total of 6077 images were 

utilized for training the model. The number of individuals diagnosed with COVID-19 was 1917, whereas 1960 

individuals were deemed healthy. Additionally, there were 2200 reported occurrences of pneumonia. The 

authors reported accuracy, sensitivity, precision, F1-score, and ROC values of 98.28%, 98.25%, 98.22%, 98.23%, 

and 99.87% correspondingly for the multiclass classification [36].  
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To speed up the COVID-19 diagnostic process, Oguz et al. [37] employed a dataset of 1345 CT scan 

images acquired from a research hospital. The images are subjected to various DL algorithms, such as ResNet-

50, ResNet-101, AlexNet, and GoogleNet, as well as additional categorization techniques like SVM, Random 

Forest, Decision Trees, and others. During the pre-processing phase, the dimensions of the CT images were 

decreased by implementing maximum pooling. In addition, the Rectified Linear Unit (ReLU) activation 

function was included in each convolutional layer. The experimental findings indicated that ResNet-50 and 

SVM outperformed the other models, achieving an accuracy rate of 96.3% and an F1-score of 95.87%. 

Nevertheless, the effectiveness of this methodology is constrained by the amount of data used and may not 

demonstrate robust applicability to unfamiliar data. As the quantity of utilized classes increases, there is a 

corresponding drop in the model's accuracy. Hussain et al. [38] presented their findings, showcasing the 

development of a deep Convolutional Neural Network model named 'CoroDet,' consisting of 22 layers. The 

dataset utilized in this study comprised a total of 7390 images, with 2843 images representing COVID-19 

patients, 3108 images representing normal cases, and 1439 images representing instances of pneumonia caused 

by both viral and bacterial infections. The deep Convolutional Neural Network model was utilized for three 

distinct class classifications: COVID-19, Pneumonia-Bacteria, and Normal. A four-class classification, including 

COVID-19, Pneumonia-Bacteria, Normal, and Pneumonia-Viral, was also performed. Notably, no preprocessing of 

the data was conducted before these classifications. The methodology devised by the researchers resulted in 

an accuracy rate of 99.1% for classifiers with two classes, 94.2% for classifiers with three classes, and 91.2% for 

classifiers with four classes. Nevertheless, these conclusions may be enhanced by the augmentation of data, 

equalizing class instances, and implementing data pre-processing techniques to mitigate noise. 

3. Materials and Methods 

This research aims to construct a DL framework that can accurately categorize COVID-19, Pneumonia, 

and TB into normal and pathological categories. The suggested system employs a DL convolutional neural 

network. Its main use is image categorization and analysis, where each network layer applies a distinct set of 

filters. The outcomes of each layer are obtained by the fusion of a range of 100 to 1000 filters. The results are 

ultimately transmitted to the subsequent neural network layer. Figure 2 illustrates the suggested methodology 

for the detection model, which aims to distinguish normal and infected cases for each illness. The training 

process utilizes the Keras and Tensorflow software libraries. The proposed model would incorporate many 

stages, including dataset acquisition, partitioning, preprocessing, training, and testing/evaluation. 

 

Figure 2. Proposed system’s framework  
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Figure 3 shows the block diagram of the proposed system. The proposed model takes as input X-ray 

samples of images associated with each detected disease. The first convolutional layer receives image input, 

which is processed using a specified activation function. The pooling layer is introduced successively after the 

activation function layer. The utilization of a max pooling layer serves the purpose of diminishing the spatial 

dimensions of the representation. The suggested model includes a secondary convolutional layer that follows 

the same layer sequence as the first layer, including an activation layer, a pooling layer, and a max-pooling layer. 

 

Figure 3. Block diagram of the proposed system 

In the initial stage, the input images are subjected to a random partitioning method, whereby the data 

image is divided into 80% for training purposes and 20% for validation. Pre-processing techniques such as 

normalization and scaling are also applied to the images using relevant functions. Then, in the second and 

third stages, DL algorithms are deployed. The second step involves the process of feature extraction, which is 

achieved by employing ResNet50, VGG19, MobilenetV2, DenResCov-19, and CNN algorithms. Employing a 

fully linked network is utilized at the image categorization stage. 

The architecture of the CNN, as outlined in section 2 and depicted in figure 4, comprises an input 

layer, an output layer, and hidden layers that are formed of convolutional layers with Rectified Linear Units 

(ReLU), pooling layers, and fully connected layers. The input datasets for this network consist of X-ray images 

representing both normal and sick occurrences for each illness, along with three RGB channels. The 

dimensions of the chosen input data set are 224 x 224. The provided dataset is inputted into the first layer, 

known as the convolutional layer, which utilizes the Rectified Linear Unit (ReLU) activation function. The 

initial layer employs a kernel with the size of 224 x 224 and produces 32 output channels to diminish the 

feature map. Additionally, it generates 32 output channels to further lower the feature map to a size of 112. 

The maximum values for each window will be documented when filtered using the stride. The procedure 

above will be executed for every individual dataset of filtered images. The third layer of the network consists 

of a convolutional layer with a kernel size of 112 x 112, followed by a pooling layer with a kernel size of 7 x 7, 

which precedes the fully connected layer. Furthermore, the network incorporates a flattened layer that is fully 

linked. The SoftMax function incorporates a fully linked layer into the model architecture. The ultimate layer 

will be employed to make predictions regarding the classification of an image, namely whether it is normal or 

contaminated with a disease. 
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Figure 4. CNN model architecture used for the proposed system 

3.1 Dataset 

In addition to healthy examples, X-ray images of COVID-19, pneumonia, and TB were accessible and 

collected from dependable sources [38-40]. Figure 5 presents X-ray image samples utilized in this work, 

showcasing (A) a normal case, (B) a case of COVID-19, (C) a case of pneumonia, and (D) a case of TB. The 

COVID-19 dataset comprises 13,805 images, encompassing both normal and diseased cases. These images are 

further separated into 11,044 for training and 2,761 for testing purposes. The dataset consists of a total of 5840 

images, encompassing both normal and infected instances of pneumonia. These images are further separated 

into 4672 images for training and 1168 images for testing purposes. The dataset used in this study consists of 

a total of 4200 images, encompassing both normal and infected instances of pneumonia. These images have 

been separated into two subsets: 3360 images for training purposes and 840 images for testing purposes. Table 

1 presents the specific information of the dataset stated before. 

                        
(a)          (b)              (c)   (d) 

Figure 5. X-ray image samples (a) normal (b) COVID-19 (c) pneumonia (d) tuberculosis 

3.2 Preprocessing and Data Augmentation 

The datasets comprise X-ray images with varying resolutions. In contrast, the CNN models require 

the image dataset to adhere to specific size requirements. Consequently, the X-ray images within the dataset 

were uniformly scaled to dimensions of 224 * 224. Decreasing the dimensions of the input image has the effect 

of expediting the image processing procedure, hence hastening the model's performance for the specific 

associated job. The primary concern associated with image datasets is overfitting. Data augmentation is a 

widely employed strategy in ML, wherein small alterations are introduced to an image during each training 

epoch. This approach is favored due to its ability to substantially augment the volume of training data and 

effectively mitigate the issue of overfitting. Several augmentation techniques were employed in this study, 

encompassing image rotation, range shearing, range zooming, and horizontal flips. 

Using a random splitting method, the dataset was divided into two subsets, namely the validation 

subset and the training subset. The validation subset accounted for 20% of the data, while the training subset 
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accounted for 80%. This division was implemented to ensure that the variability included in the X-ray images 

adhered to the required parameters for training the proposed model. The CNN model's ability to leverage 

additional data beyond the original dataset is essential for attaining high levels of accuracy. 

Table 1. Details of Dataset of COVID-19, pneumonia, and tuberculosis used for this research study 

Dataset of Diseases Types of Images 
Training 

Images 

Testing 

Images 

Total 

Images 

COVID 19 [38] 

Normal 8152 2038 10,190 

COVID 19 Infected 2892 723 3,615 

Total 11044 2761 13805 

Pneumonia [39] 

Normal 1260 315 1,575 

Pneumonia Infected 3412 853 4,265 

Total 4672 1168 5840 

Tuberculosis [40] 

Normal 2800 700 3500 

Tuberculosis Infected 560 140 700 

Total 3360 840 4200 

3.3 System Realization 

The present study employs an Android application developed internally utilizing the Arduino 

integrated development environment (IDE). The DL model was deployed on the web using Tensorflow.js, 

while the same model was deployed on an Android-based application using the Tensorflow-Lite API. The 

system underwent testing using datasets to verify its ability to recognize both normal and disease-infected 

instances and assess the performance of the developed model software program, which operated as 

anticipated. Figure 6 (a), (b), and (c) illustrate the Android applications that were built for this study. 

4. Results and Discussion 

The present study aimed to evaluate the performance of four different CNN models, MobileNetv2, 

VGG19, ResNet50, and DenResCov-19, in identifying COVID-19, Pneumonia, and TB. The models underwent 

training, during which their precision and losses were evaluated. Subsequently, the test efficacy was measured 

and compared to findings from other studies. In all experimental trials, the parameter values employed for 

the number of epochs, batch size, and dropout were 50, 32, and 0.5, respectively. The dataset was partitioned 

into 80% training and 20% testing sets. The experimental hardware consisted of an Intel i7-10750H processor. 

The GPU is Nvidia GTX 1660Ti, and RAM is 16GB. 

The dataset images were classified into two groups, normal and afflicted with illness, using our 

suggested system that underwent training for 20 epochs. The accuracy, loss curves, and confusion matrix of 

the COVID-19 detection model using MobileNetv2, VGG19, ResNet50, and DenResCov-19 are depicted in 

Figures 7(a), (b), (c), and (d) accordingly. These figures illustrate the models' performance throughout the 

training and validation phases, spanning a total of 20 epochs. Likewise, the outcomes for Pneumonia and TB 

are demonstrated by 8(a), (b), (c), (d) and 9(a), (b), (c), (d).  
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Figure 6. Android App developed for the realization of the proposed system 

Table 2 presents comprehensive data about the accuracy and loss metrics for training and validation 

phases over 20 epochs for each model of COVID-19, Pneumonia, and TB. 

Table 2. Accuracy % and loss in training and validation over 50 epochs of detection model using MobileNetV2, 

VGG19, ResNet50, DenResCov-19 

Disease 

Name 
Model Name 

Accuracy % Loss 

with the 

training 

dataset 

with the 

validation set 

with the 

training dataset 

with the 

validation set 

COVID-19 

MobileNetV2 99.36 97.39 0.0219 0.0729 

VGG19 97.96 94.97 0.0619 0.0128 

Resnet50 99.79 98.37 0.0094 0.0556 

DenResCov-19 99.24 97.72 0.029 0.068 

Pneumonia 

MobileNetV2 99.12 96.92 0.0309 0.1004 

VGG 19 98.39 96.58 0.0512 0.1023 

Resnet50 99.17 97.09 0.0271 0.0852 

DenResCov-19 98.42 96.23 0.0473 0.0934 

Tuberculosis 

MobileNetV2 99.89 99.4 0.0011 0.0154 

VGG 19 99.82 99.4 0.0075 0.0207 

Resnet50 99.88 99.4 0.0012 0.0181 

DenResCov-19 99.77 99.29 0.0023 0.0195 

The loss curves in Figures 7, 8, and 9 demonstrate a minimal discrepancy between the training and 

validation loss curves, suggesting that the models have achieved satisfactory convergence. Furthermore, no 

indications of overfitting were seen throughout the training and validation processes. The confusion matrix is 

employed to represent the system's performance metrics. Additional assessment metrics can be developed 

using the available data to emphasize the system's performance being discussed. The confusion matrix yields 

a True Positive outcome when the system accurately classifies an infected case as the correct disease. A False 

Positive outcome occurs when the system incorrectly identifies a normal case as one of the disease cases. True 
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Negative is achieved when the system correctly classifies a normal case as normal, indicating the absence of 

disease. Lastly, a False Negative outcome arises when the system misclassifies an infected case as normal. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Accuracy curve, loss curves, confusion matrix of COVID-19 detection model using (a)MobileNetv2 

(b)VGG19 (c)ResNet50 (d)DenResCov-19 

An evaluation was undertaken to assess the performance of the classification model constructed in 

this study. This evaluation involved the consideration of several derived parameters: True Positive Rate (TPR), 

True Negative Rate (TNR), False Negative Rate (FNR), and False Positive Rate (FPR) as specified in (4-7) [41]. 
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Additionally, performance metrics such as precision, accuracy, and F1 score, reported as in (8-10) [42], were 

also considered. The additional metrics, recall and specificity, are equivalent to the TPR described in (4) and 

the TNR outlined in (6). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Accuracy curve, loss curves, confusion matrix of Pneumonia detection model using (a)MobileNetv2 

(b)VGG19 (c)ResNet50 (d)DenResCov-19 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Accuracy curve, loss curves, confusion matrix of TB detection model using (a) MobileNetv2 (b) 

VGG19 (c) ResNet50 (d) DenResCov-19 
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              (4) 
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Tneg
TNR

Tneg Fpos
=

+
          (6) 

Fpos
FPR

Tneg Fpos
=

+
           (7) 

Pr
Fpos

Tpos
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Tpos
=

+
       (8) 

Tpos Tneg
Accuracy

Tpos Tneg FnegFpos

+
=

+ + +
       (9) 

2*Pr *Re
1

Pr Re

ecision call
F Score

ecision call
=

+
                   (10) 

The assessment of precision functions as a method to measure the efficacy and feasibility of the 

proposed system. The precision metric is utilized to determine the true proportion of positive predictions. The 

recall measure, or the sensitivity measure, evaluates the proportion of correct predictions generated by the 

suggested model. The F1-score is commonly defined in academic literature as the inverse mean of the recall 

and accuracy metrics, which are widely employed for assessing the performance of a model. The equations 

above can provide a deeper understanding of the suggested system. The classification report of the suggested 

system is presented in Table 3. 

According to the data shown in Table 3, it is evident that the ResNet50 model architecture outperforms 

the other models utilized in terms of performance. The ResNet50 model achieves an accuracy of 99.79% and 

an F1 score of 96.89% for COVID-19, while for pneumonia classification, it attains an accuracy of 99.17% and 

an F1 score of 94.52%. The performance of TB diagnosis using the MobileNetV2 and ResNet50 models 

exhibited nearly identical levels of accuracy, achieving a rate of 99.88%. The F1 score, which measures the 

balance between precision and recall, also reached 99.64%. One notable discovery in our research is the 

comparison of the efficacy of different models using the provided dataset. 

Table 3. Performance evaluation of different measures for the proposed system 

D
is

ea
se

 

N
am

e 

Model Name 

Measures 

T
P

R
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N

R
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N

R
 

F
P

R
 

P
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ci
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n

 

R
ec

al
l 

th
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sa
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T
P

R
 

S
p

ec
if

ic
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y
 

sa
m
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as

 

T
N

R
 

F
1-

S
co

re
 

C
O

V
ID

-1
9 MobileNetV2 0.9530 0.0470 0.9814 0.0186 0.9477 0.9530 0.9814 0.9503 

VGG19 0.8769 0.1231 0.9755 0.0245 0.9269 0.8769 0.9755 0.9012 

Resnet50 0.9710 0.0290 0.9882 0.0118 0.9669 0.9710 0.9882 0.9689 

DenResCov-19 0.9640 0.0360 0.9818 0.0182 0.9496 0.9640 0.9818 0.9568 

P
n

eu
m

o
n

ia
 

MobileNetV2 0.9460 0.0540 0.9777 0.0223 0.9401 0.9460 0.9777 0.9430 

VGG 19 0.9333 0.0667 0.9777 0.0223 0.9393 0.9333 0.9777 0.9363 

Resnet50 0.9302 0.0698 0.9859 0.0141 0.9607 0.9302 0.9859 0.9452 

DenResCov-19 0.9429 0.0571 0.9695 0.0305 0.9195 0.9429 0.9695 0.9310 

T
u

b
er

cu
lo

si
s 

MobileNetV2 0.9971 0.0029 0.9786 0.0214 0.9957 0.9971 0.9786 0.9964 

VGG 19 0.9986 0.0014 0.9714 0.0286 0.9943 0.9986 0.9714 0.9964 

Resnet50 1.0000 0.0000 0.9643 0.0357 0.9929 1.0000 0.9643 0.9964 

DenResCov-19 0.9986 0.0014 0.9643 0.0357 0.9929 0.9986 0.9643 0.9957 
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5. Discussion on Clinical Applicability 

The proposed models, particularly ResNet50 and MobileNetV2, are now ready for application in 

clinical workflows to aid radiologists in determining these diseases quickly and efficiently: COVID-19, 

pneumonia, and tuberculosis. They have high accuracies at 99.79% for COVID-19 and 99.88% for tuberculosis, 

and these models might become a trustworthy tool for early detection, thus allowing for earlier management 

of patients and their treatments. With incredibly high accuracy rates obtained by the proposed models, they 

can be valuable tools supporting a radiologist's decision to make faster and more accurate diagnoses. This 

could become valuable where expertise by radiologists is fewer and farther between. The models used in this 

study- the MobileNetV2 especially- are highly computationally efficient and may be deployed even within 

resource-constrained environments. Where medical and CT scan professionals or units are difficult to access, 

the system may be a cost-effective and practical solution for disease detection and diagnosis by using only X-

ray machines in a less densely populated or deprived area. The interface of proposed models into a mobile 

app will afford many telemedicine opportunities in which service providers can assess the X-rays taken by 

patients remotely. This could be particularly useful in the COVID-19 pandemic, where telemedicine diagnosis 

reduces contact exposure to healthcare workers and patients. Although these models demonstrate high 

performance on the datasets used here, the clinical environment may present a challenge, including noisiness, 

poor quality, or incompleteness of the X-ray images. Testing and validating the system in the clinical 

environment will be necessary to ascertain that the system can handle the variability associated with such 

situations. 

6. Conclusions 

Besides the ongoing COVID-19 pandemic, timely detection of diseases such as pneumonia and TB 

positively impacts patient mortality rates. To enhance the quality of healthcare services while minimizing 

expenses and reaction time, creating a mobile application that incorporates Convolutional Neural Networks 

and an Ensemble of DL Architectures is imperative. This application would be utilized inside energy-efficient 

medical devices to facilitate the automated identification of illnesses. An in-house mobile application of 

convolutional neural networks was developed using four different DL architecture models (MobileNetV2, 

ResNet50, VGG19, and DenResCov-19). These models were trained on COVID-19, pneumonia, and TB images 

from an open-access dataset. The models were utilized to classify the CXR image and discern the presence of 

COVID-19, pneumonia, TB, and healthy individuals. When evaluating several models for the detection of 

COVID-19, it was shown that the ResNet50 model architecture had superior performance, achieving an 

accuracy of 99.79%, an F1 score of 96.89%, and a precision of 96.69%. The ResNet50 model architecture 

demonstrates superior performance compared to previous models utilized in the detection of pneumonia, 

achieving an accuracy of 99.17%, an F1 score of 94.52%, and a precision of 96.07%. The performance of TB 

detection using the MobileNetV2 and ResNet50 models exhibited similar results, achieving an accuracy of 

99.88% and 99.64% F1 score. Additionally, the precision rates for the MobileNetV2 and ResNet50 models were 

99.57% and 99.29%, respectively. One of the noteworthy outcomes of our study is the comparison of the 

effectiveness of several models on the provided dataset. The entire data confirmed the proposed technique's 

efficacy and efficiency. In the foreseeable future, there will be a comprehensive collection of CT scan data, 

including data on diverse lung illnesses, to train the model and enhance the healthcare industry. All data sets 

were subsamples of specific sources, such as publicly available repositories like Kaggle, which would 

introduce geographic and institutional biases, potentially limiting the broader generalisability of the models 

to diverse populations or healthcare settings. For instance, the data can reflect particular demographic groups 

or medical institutions and thus may not represent more general populations in other parts of the world. 

Furthermore, validation in real-world clinical settings remains necessary since the proposed models were 

stringently tested on these datasets. Models might face noisy, low-quality, or ambiguous X-ray images in 

practical applications not found in this study's clean and preprocessing datasets. Testing in actual clinical 

environments would thus better give insight into the robustness and applicability of models to real-world 

challenges and variability in image quality. 
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