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Abstract: This study aimed to develop an air quality monitoring and 

forecasting system focusing on PM2.5 using a combination of AI of Things (AIoT) 

technology. The system was designed to provide warnings of PM2.5 levels 

through a mobile application. Air pollution, particularly PM2.5, is a significant 

health concern globally, with Southeast Asia being heavily affected. Bangkok, 

Thailand, experiences high PM2.5 concentrations during cool weather. Existing 

research explores short-term PM2.5 prediction using AIoT. Still, there is a need 

for improved software, hardware, and ML algorithms for user-friendly mobile 

applications with real-time data access and health advisories. The system was 

installed on a building next to a main road in Bangkok. It collected data on PM2.5. 

The Air Quality Index (AQI) was used to categorize PM2.5 levels and their health 

impacts. Time series analysis with moving averages and the Random Forest 

algorithm were employed in advance for PM2.5 forecasting. A mobile application 

was developed to provide a user interface and data visualization. The MARF 

(Moving Average and Random Forest) model emerged as a success, achieving 

higher accuracy (average of 92.59%) for 1-hour advance forecasts compared to 

the Moving Average (MA) model (average of 84.16%). The developed system 

demonstrates the potential of AIoT for accurate PM2.5 monitoring and 

forecasting. Future research could explore more advanced ML algorithms and 

integrate additional environmental factors for enhanced forecasting accuracy. 
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1. Introduction 

Research worldwide shows that air pollution, known as PM2.5, refers to 

fine particles with an aerodynamic diameter smaller than 2.5 microns. 

Populations around the world, especially in Southeast Asia, are greatly affected. 
According to research reports [1-2], deaths occurred in the highest proportion 

due to PM2.5 worldwide in 2015. Thailand is one of the regions heavily affected 

by PM2.5, especially Bangkok, the capital [3]. During the cold weather of the year, 

various districts in Bangkok will have PM2.5 concentrations exceeding the 

standard level compared to the 24-hour air quality average of more than 50 

µg/m3 [4]. The Nong Khaem district has the highest average PM2.5 concentration 

out of the 50 districts [5], especially along Phet Kasem Road. PM2.5 data from the 

PM2.5 monitoring system from satellite and geoinformatics technology [6] of Geo-

Informatics and Space Technology Development Agency (Public Organization) 
or GISTDA found that the density value of PM2.5 in the Nong Khaem district of 
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Bangkok in the first quarter of 2024, when Bangkok was still influenced by cool air from the north, was 38.48 

µg/m3. When compared to the Krung Thonburi area, which is on the west side of Bangkok and has similar 

characteristics, it was found that the average PM2.5 density was 35.61 µg/m3 or an average rate of 8.06 percent. 
On the day that Nong Khaem District had the highest PM2.5 density at 104.59 µg/m3, it was 193.74 percent 

higher than the average in the entire Krung Thonburi area. Therefore, monitoring PM2.5 density and air quality 

is essential and helps affected people understand the situation [7-9]. In addition, developing a system that can 

predict air quality and PM2.5 in advance is an important issue that will help them deal with problems better, 

such as managing time for outdoor activities and protecting themselves with dust masks. Several researchers 

[10-12] are interested in developing short-term PM2.5 predictions using IoT technology combined with AI, 

which has shown that this technology can predict PM2.5 levels in advance. However, this research area still 

needs to be improved in terms of software, hardware, and even better AI algorithms, such as notification of 

PM2.5 forecast results in advance through a mobile app system. Make it easy for users to understand the 

meaning of AQI, accurate forecasts with less complex algorithms, etc. For example, researchers [13] have 

developed a machine learning algorithm to predict PM2.5, which tends to increase in the short term, 60 minutes 

in advance. PM2.5 forecasting has also been studied using current ground-level meteorological data to estimate 

PM2.5 concentrations 1-5 hours in advance [14, 15]. Even though Nong Khaem District is a suburb of Bangkok, 

there are few high-rise buildings, and most of the area is still green. The design and development of this air 

quality measurement and forecasting system aims to apply IoT technology and artificial intelligence to 

measure and forecast air quality [16], especially PM2.5, to provide warnings in advance via mobile application.  
This research developed an air quality monitoring station. It was installed on the 6th floor of the 

Polakrit Building, Southeast Asia University, next to Phet Kasem Road in the Nong Khaem District, Bangkok. 

This measurement station is approximately 40 meters above ground level, providing comprehensive air 

quality measurements. This research aims to develop a PM2.5 monitoring and forecasting system with the AQI 

index using IoT technology and artificial intelligence to notify users of forecast results in advance through 

mobile applications. The station includes sensors measuring PM2.5, temperature, humidity, air pressure, wind 

speed, and wind direction. 

2. Related Works  

 This section represents several research papers relevant to developing a PM2.5 monitoring and 

forecasting system using a mixed model of IoT and Machine Learning (ML) accessible through a mobile 

application. Data Collection and Sensor Technology: Balogun, Alaka, & Egwim (2021) [17] demonstrate the use 

of IoT sensors to collect air quality data, including NO2, alongside weather and traffic data. This highlights the 

potential of IoT for PM2.5 data collection in the proposed method. 

 Machine Learning for PM2.5 Prediction: Many researchers are interested in presenting their research 

papers [18-23], which examine various machine learning algorithms for air quality prediction, including NO2 
(similar to PM2.5) prediction [17]. These reports showcase the effectiveness of Artificial Neural Networks (ANN) 
[22], Long Short-Term Memory (LSTM) [20, 21], Fuzzy Time Series (FTS) [18], Multilinear Regression (MLR) 
[19], ARIMA models [B6], and CEEMDAN-ARMA-LSTM model [23]. These findings suggest we explore a 

combination of these algorithms to find the optimal model for PM2.5 prediction in the proposed research.  
 Factors Affecting PM2.5 Concentration: Baharfar et al. [24] examine factors influencing indoor PM2.5 

concentration, including outdoor PM2.5 levels, number of occupants, ambient temperature, wind speed, and 

wind direction. While this paper focuses on indoor settings, open doors, and windows highlight the 

importance of considering various environmental factors alongside PM2.5 sensor data for improved prediction 

accuracy. 
 Mobile Application Integration: The papers above focus on data collection and prediction models. 
However, recent advancements in mobile cloud computing and secure data transmission protocols must be 

considered for mobile application integration to ensure user privacy and real-time data access. 

 Novelty and Contribution: While existing research provides a strong foundation, this project offers a 

novel contribution focusing on PM2.5 prediction using a combination of the most effective ML algorithms and 

integrating a user-friendly mobile application for real-time data access, visualization, and potential health 

advisories based on PM2.5 levels. Furthermore, to enhance prediction accuracy, especially for outdoor 

environments, consider a more comprehensive range of environmental factors beyond those explored in [24]. 
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3. Materials and Methods 

3.1 Air Quality Index 

The Air Quality Index is an easy-to-understand air quality report for the public. To make the public 

aware of the level of air pollution in each area, how much does it affect health? One air quality index represents 

the concentration of 6 air pollutants: Particulate matter no larger than 2.5 microns in size (PM2.5) that arises 

from combustion from vehicles, agricultural materials, forest fires, and industrial processes. It causes 

respiratory disease. 

In addition, if accumulated for a long time or received in large amounts, it will accumulate in the lung 

membranes, reducing the efficiency of the lungs and causing bronchitis and asthma symptoms. Particulate 

matter no larger than 10 microns (PM10) is dust with a diameter of no more than 10 microns. Burning fuel, open 

burning, industrial processes, grinding, milling, or pulverization from construction produce it. It affects health 

because when inhaled, it can accumulate in the respiratory system. Ozone gas (O3) is a colorless or light blue 

gas with a pungent odor, is slightly soluble in water, and occurs both in the atmosphere high above the Earth's 

surface and near the ground. Ozone gas, an air pollutant, is ozone gas in the Earth's surface atmosphere.  It is 

caused by a reaction between nitrogen oxides and volatile organic compounds, with sunlight acting as a 

catalyst. It affects health by causing eye irritation and irritation of the respiratory system and various mucous 

membranes, decreased lung capacity, and early fatigue, especially in children, the elderly, and people with 

diabetes cystic fibrosis. Nitrogen dioxide (NO2) is a colorless and odorless gas slightly soluble in water. It is 

commonly found in nature or caused by human actions, such as burning various fuels, some industries, etc. 
This gas affects the visual system and people with asthma or other respiratory diseases. Sulfur dioxide (SO2) 
is a colorless to pale yellow gas with a taste and odor at high concentrations. It is caused by nature and the 

combustion of fuels that contain sulfur. It is highly soluble in water and can combine with other pollutants to 

form small dust particles. This gas directly impacts health, irritating the mucous membranes of the eyes, skin, 

and respiratory system. If you take it for a long time, it can cause chronic bronchitis. 

Thailand's Air Quality Index (AQI) [5] is divided into five levels, from 0 to 201 and above. Each level 

uses a color to symbolize the level of impact on health. An air quality index of 100 is equivalent to air quality 

standards in the general atmosphere. If the air quality index exceeds 100, the air pollution concentration 

exceeds the standard, and that day's air quality will begin to affect public health. The air quality index is 

between 0 and 25, represented by blue, which means the air quality level is excellent, and all citizens can lead 

everyday lives. The air quality index value is between 26 and 50, represented by green, meaning the air quality 

level is good, and the public can do outdoor activities as usual. People in at-risk groups should monitor 

themselves for unusual symptoms such as coughing, chest tightness, fatigue, or dizziness. Air quality index 

values between 51 and 100, represented by yellow, indicate moderate air quality. The public should reduce 

activity time or exercise outdoors. People in high-risk groups should wear protective equipment, such as 

masks, to prevent PM2.5 exposure every time they go outside the building. In addition, they need to reduce the 

time they spend doing activities or exercising outdoors and consult a doctor if they encounter any irregular 

symptoms. An AQI value between 101 and 200, represented by orange, means the air quality level is starting 

to impact health. The public should use personal protective equipment such as a PM2.5 mask outside the 

building. Limit your time in outdoor activities or exercise and watch for unusual symptoms such as coughing, 

sneezing, or eye irritation. People in at-risk groups should wear personal protective equipment, such as masks, 

to prevent PM2.5 exposure every time they go outside the building. Avoid doing activities or exercising 

outdoors, and follow your doctor's advice. If you have any unusual symptoms, consult your doctor 

immediately. Air quality index values greater than 201, represented by red, mean air quality levels affect 

health. To prevent PM2.5, all citizens must avoid outdoor activities and always wear personal protective 

equipment, such as masks. If you have any abnormal symptoms, please consult a doctor immediately. For 

patients with chronic diseases, stay in areas safe from air pollution. Prepare necessary medicines and 

equipment and strictly follow the doctor's instructions. 

Calculation of the daily air quality index of each type of air pollutant. It is calculated from air pollutant 

concentration values and air quality measurement results. The air pollutant concentration values are 

equivalent to the air quality index values at various levels. Calculating the air quality index within a level 

range is a linear equation. 
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1 =
𝐼𝑗 − 𝐼𝑖

𝑋𝑗 − 𝑋𝑖

 (𝑋 − 𝑋𝑖) + 𝐼𝑖       (1) 

I  =  Air quality sub-index value, 

X  =  concentration of air pollutants from measurement, 

Xi, Xj  =  minimum, maximum values of the pollutant concentration range with values of X, 

Ii, Ij  =  minimum, maximum values of the air quality index range corresponding to the 

concentration range X from the calculated sub-index values. 

Which air pollutant has the highest index value was used as the Air Quality Index (AQI) at that time. 

 

3.2 Time Series Analysis and Moving Average 

According to the emergence of PM2.5, the values measured by sensors are time series data. Time series 

analysis [25] is the prediction of future values of a dependent variable by using data on that variable to study 

various patterns of relationships. Time series analysis involves separating the various components in the data 

and analyzing their interrelationship patterns to predict their future value. Time series data can be separated 

into four movement patterns: Secular Trend, Seasonal Movement, Cyclical Movement, and Irregular 

Movement [26]. The Moving Average (MA) model is one of four used for time series forecasting. It is a 

mathematical technique for finding the average value changing over time. It replaces the oldest data set with 

the most recent dataset, then re-averages it over periods such as 3, 6, 12, and 24 hours in advance, as used in 

this study. There are two methods of calculating the moving average: Simple Moving Average and Weighted 

Moving Average.  

This research uses the Simple Moving Average model to forecast PM2.5 air quality because the system 

collects data hourly, with 24 items per day and 168 items per week. To forecast from historical data throughout 

the week, which has different data characteristics each day, this research uses 168 historical data items for 

calculation, as shown in the following equation. 

 

𝐹𝑡 =  
𝐴𝑡−1 + 𝐴𝑡−2 + ⋯ + 𝐴𝑡−168

𝑛
     (2) 

𝐹3 =  
𝐴𝑡−1 + 𝐴𝑡−1 + ⋯ + 𝐴𝑡−166 + 𝐹𝑡−1 + 𝐹𝑡−2

𝑛
     (3) 

𝐹6 =  
𝐴𝑡−1 + 𝐴𝑡−1 + ⋯ + 𝐴𝑡−163 + 𝐹𝑡−1 + ⋯ + 𝐹𝑡−5

𝑛
      (4) 

𝐹12 =  
𝐴𝑡−1 + 𝐴𝑡−1 + ⋯ + 𝐴𝑡−157 + 𝐹𝑡−1 + ⋯ + 𝐹𝑡−11

𝑛
      (5) 

𝐹24 =  
𝐴𝑡−1 + 𝐴𝑡−1 + ⋯ + 𝐴𝑡−143 + 𝐹𝑡−1 + ⋯ + 𝐹𝑡−23

𝑛
      (6) 

Where 

Ft  = the forecast value for the period t. 

At-n  = actual value in period t-n 

n  = number of data sets to find the moving average. 

 

Forecasting 1 hour ahead, using 168 past actual PM2.5 values (2), 3-hour advance forecast (3), 166 past 

actual PM2.5 values, and 1-and 2-hour advance forecasts (4). Forecasting 6 hours, using 163 past actual PM2.5 

values along with forecast values 1-5 hours ahead (5); forecast 12 hours in advance, using 157 past actual PM2.5 

values together with forecast values from 1-11 hours in advance and 24-hour advance forecast (6), using 143 

past actual PM2.5 values along with 1 – 23-hour advance forecast values. 

 

3.3 Random Forest  

The research team proposed a method for integrating forecasting techniques with machine learning 

to improve the accuracy of PM2.5 air quality forecasts. Due to the conditions of the developed system are 

designed to be adaptable, ensuring that the forecast results can be displayed 1, 3, 6, 12, and 24 hours in advance 
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at any given time. Using historical data, including PM2.5, temperature, humidity, air pressure, wind speed, and 

wind direction, to train the system according to the principles of supervised machine learning, we have chosen 

a method that balances processing time with accuracy and reliability, ensuring dependable performance. 

Therefore, the research team proposes using the random forest technique, a widespread algorithm used in 

regression and classification forecasting without needing hyperparameter tuning to get better results. 

Random Forest is a popular model developed from a decision tree. The principle of random forest is 

to create a model from many decision trees. Each model receives a different subset of the data set. Then, 

forecasting is assigned to each decision tree model to calculate its forecast results. In the case of classification, 

the vote output is obtained from each forecast that the decision tree selects the most. This improves the 

prediction results from the decision tree, which are more accurate and control over-fitting. 

 

 
 

Figure 1. Random forest process 
 

In this research, Bootstrapping from all data sets is used to get n data sets that differ according to the 

number of decision trees in random forests from a total of 6 features, including wind speed, wind direction, 

humidity, air pressure, temperature, and PM2.5 (X1, X2, …, and X6), to create a model decision tree for each 

dataset. Then, the results are aggregated from each model or bagged with voting. The RandomForestClassifier 

of Scikit-learn ensemble methods for classification is used in forecasting processing, with the n_estimators 

parameter set to 100 trees. The supported criteria are the Gini impurity, log_loss, and entropy for the Shannon 

information gain [27]. The developed system will take the forecast values obtained from the moving average 

process, separate them, and specify PM2.5 levels from 1, the lowest, to 5, which is a very high PM2.5 value, as 

input and use them. All data from the database is used to train the system every hour. Then, the obtained 

model with moving average (MA) and random forest (RF) forecasting (MARF) will be used to forecast PM2.5 

air quality 1, 3, 6, 12, and 24 hours in advance. 

 

3.4 System Framework   

Figure 2 shows an overview of the system's operation. The sensors measure temperature, humidity, 

air pressure, wind speed, wind direction, and the amount of PM2.5 dust in the air. All collected information is 

stored in a database, which can display PM2.5 air quality values at the current time and label each frame 

according to the five class PM2.5 values with rule-based classification. The system then processes air quality 

forecasts 1, 3, 6, 12, and 24 hours in advance. The research team has chosen two comparative methods to 

compare the forecasts: A moving average (MA) and a mixed method with a moving average and a Random 

Forest (MARF). Moving Average processing uses 168 historical data frames (24 hours, seven days) to forecast 

the future. In addition, the system will take the forecast values obtained from the six moving averages in 
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advance as input data to create a forecast model with MARF. Forecasts are processed with an impurified 

random forest of 100 trees every 1-hour using Scikit-learn's Python library, and the forecast results are divided 

into five classes stored in the database. While mobile applications are developed in Dart, a programming 

language developed by Google, it is designed to create mobile and web applications. It is developed on the 

Flutter framework to work cross-platform, and it can be used on Windows, Mac OS, Linux, iOS, or Android. 

 

 
Figure 2. Framework of the AQI PM2.5 monitoring and forecasting system 

 

Forecast data is divided into five classes: Class 1 means very good air quality with an average PM2.5 

not exceeding 15 ug/m3; Class 2 means good air quality with an average PM2.5 between 15.1-25.0 µg/m3; Class 

3 means that the air quality is moderate with an average PM2.5 between 25.1 - 37.5 µg/m3; Class 4 means that 

the air quality is starting to have an impact on health, with an average PM2.5 between 37.6 – 75.0, and Class 5 

means Air quality affects health, the average PM2.5 is more than 75.1 µg/m3.  
 

3.5 Hardware Design and Development  

The hardware development of this air quality monitoring and forecasting system consists of the 

following hardware: BME280 Temperature Humidity Barometric Pressure Sensor [28] is a sensor device for 

measuring temperature, air humidity, and barometric pressure. It is connected via Inter-Integrated Circuit 

(I2C) and uses a current of 1.7 - 3.6V. It can measure temperature from -40 to 85 degrees Celsius, humidity 

from 0 to 100%, and barometric pressure from 300 to 1,100 hPA. Temperature accuracy class ± 0.5 degrees 

Celsius (at 25 degrees Celsius). The Laser Dust Sensor PM 2.5 PMS7003 [29] measures the amount of dust in 

the air by detecting dust particles with laser light. It can detect small particles ranging from 0 to 500 

micrograms per cubic meter. The particles it can detect are PM1.0, PM2.5, and PM10. 

The smallest particle that can be detected is 0.3 micrometers. This sensor's output is qualitative and 

quantitative information on individual particles of different sizes per unit volume. The particle count volume 

unit is 0.1 liter, and the mass concentration unit is μg/m³. Wind Direction Sensor Signal 0-5V [30] measures 

wind direction. Its output voltage is 0-5 volts, input power is 10-30 volts, it can rotate 360 degrees, measure in 

eight directions, and works at temperatures from 20 to 60 degrees Celsius. In addition, Wind Speed Sensor 

Signal 0-5V [31] is used to measure wind speed. It is a 3-cup wind-measuring device with an output voltage of 

0-5 volts and an input voltage of 7-24 volts. It measures wind speed in the 0-30 m/s range, with a value accuracy 

of 0.1 m/s. It works at a temperature of -20 to 60 degrees Celsius. 

According to Figure 3 (a) and (b), an ESP32 board [32] is used as an embedded processing unit to 

receive sensor values, process them, and forward the data to cloud computing. The ESP32 Board uses an 

Xtensa single-core 32-bit, LX6 microprocessor, running at 160 or 240 MHz. It has 520 KB SRAM, Wi-Fi: 802.11 

b/g/n, and Bluetooth: v4.2 BR/EDR and BLE. It operates at temperatures of -40ºC to 125ºC. The private server 
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used for processing is a Dell PowerEdge T150 Server with an Intel Xeon E-2314 2.8 GHz, 8M Cache, 4C/4T 

16GB UDIMM, 3200M/Ts, and ECC 3*2TB HDD SATA 6Gbps, installed at the IT Center, Polakrit Building, 

Southeast Asia University, Bangkok. 

 

  

  
 

Figure 3. Electronic circuit diagram of the AQI PM2.5 monitoring and forecasting system. 

 

 

 
 

 
 

Figure 4. Use case and class diagram of AQI PM2.5 monitoring and forecasting system 

 

3.6 Software Design and Development 

System Analysis and Design (SAD) for this research include: 1. Functional Requirements consist of (1) 
being able to track wind speed, wind direction, humidity, air pressure, temperature, and PM2.5 at the current 

time and historical data and (2) being able to follow the future air quality index forecast AQI PM2.5. 2. Non-

functional requirements consist of (1) PM2.5 data and other values that can be tracked 24 hours a day and (2) 
can be used by both web and mobile applications. The basic working principles of the PM2.5 air quality 

monitoring and forecasting system using artificial intelligence are as follows. PMS7003 measures the amount 

of PM2.5 in the air. The BME280 measures temperature, air pressure, and humidity in the air. Meanwhile, 

turbines measure the speed and direction of the wind, as shown in Figure 4. 

(a) 

(b) 

(a) 

(b) 
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All sensors are connected to a Node MCU ESP32 to collect data and then forward it to the MySQL 

Database at 1 hour per frame. The code program was developed with PHP to communicate with the Node 

MCU ESP32, and the MySQL database system, which manages both current and historical data, was installed 

on the private server. Examining past dust values, processing current data to forecast future air quality 

indexes, and storing the processed forecast data in a database system. Users can choose to use it through web 

applications or mobile applications. The display of PM2.5 values is divided into five levels according to 

Thailand's air quality index classification, as shown in Figures 5 and 6. By using only the density of PM2.5 in 

the air, each level uses color to symbolize the level of impact on health. When measured, the PM2.5 value is 

between 0 – 15.00 µg/m3, meaning that the PM2.5 density is very low, represented by a blue color. If the value 

is measured between 15.10 – 25.00 µg/m3, the PM2.5 density is low and represented by a green color. If the 

value is measured between 25.1 and 37.5 µg/m3, the PM2.5 density is moderate and starting to impact health, 

represented by a yellow value. If the value is measured between 37.6 – 75.0 µg/m3, the PM2.5 density is high 

and dramatically impacts health, represented by orange. If the value is more than 75.1 µg/m3 or more, the PM2.5 

density is very high and has a very high impact on health, represented in red.  
 

 
 

  

    
 

Figure 5. Example of User Interface of AQI PM2.5 monitoring and forecasting system 

 

 

 

 

 

Figure 6. Example of user interface showing notifications and historical data 

 

 

(b) 

(a) 

(c) 

(a) 
(b) (c) 
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4. Results and Discussion 

 

   
 

Figure 7. The acquisition station is installed on the Polakrit Building, Southeast Asia University, and the location 

of the installation point 

 

This research installed equipment to measure PM2.5 dust, temperature, humidity, air pressure, wind 

speed, and wind direction on the 5th floor of the Polakrit Building, approximately 40 meters above ground 

level. The Polakrit Building, situated on Petchkasem Road, Figure 7, a major thoroughfare with heavy daily 

traffic, especially during the morning and evening rush hour, provides a significant context for this research 

Figure 7. Data collection lasted 175 days, from Saturday, November 25, 2023, to Thursday, May 30, 2024. From 

December to February, Bangkok is significantly affected by high pressure from China, which causes cool 

weather and a substantial increase in PM2.5 dust yearly. Therefore, Thailand enters summer from March to 

May every year. Low air pressure influences Bangkok, which is less affected by PM2.5 dust [6]. This allows the 

experiment of this air quality monitoring and forecasting system to compare different weather conditions. The 

system collects data from various sensors once an hour and records it in the MySQL database, with 24 daily 

records and 4,209 records. Random forest prediction requires a dataset to train the system. Therefore, the 

forecast runs from March 4, 2024, to May 31, 2024, a total of 88 days and 2,112 records for forecasting and analysis. 
Confusion matrix, also known as error matrix, and cross-entropy loss, also known as log loss, are used 

in machine learning to evaluate the performance of classification models. In this specific study, these two 

techniques were used to evaluate the performance of MA and MARF for classification purposes. A confusion 

matrix is a summary table showing how well a model predicts different class samples. When optimizing the 

classification model, calculate the difference between the predicted and actual responses. Cross-entropy can 

be used as a loss function [33].  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 +  𝑇𝑁
      (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
      (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
       (10) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
      (11) 

 

TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False Negative, respectively [34].  

(a) (b) 



ASEAN J. Sci. Tech. Report. 2025, 28(1), 10 of 18e255168.ASEAN J. Sci. Tech. Report. 2025, 28(1), e255168. 10 of 18 
 

 

 After analyzing the confusion matrix, various performance parameters, including Sensitivity or 

Recall, Specificity, F1 score, Accuracy, and Precision, are calculated to evaluate the model's performance. 

Accuracy is defined as the proportion of correct predictions out of all predictions. Recall, also known as true 

positive rate, is calculated as the proportion of correctly predicted positive instances to the total number of 

positive instances. Specificity, also known as true negative rate, refers to the proportion of predicted negative 

instances that are accurate relative to the total number of negative instances. Accuracy, also known as positive 

prediction value, refers to the proportion of positive instances correctly predicted compared to the total 

number of cases predicted to be positive. The F1 score can be defined as the harmonic average of Recall and 

Accuracy, two crucial data analysis parameters [34]. Equations (1-5) can be used to calculate these parameters.  

 

 
 

Figure 8. Comparison of the accuracy of forecasts 1, 3, 6, 12, and 24 hours in advance using the MA and MARF methods.  

 

Figure 8 shows the results of comparing the average percentage accuracy of the 1-hour advance 

forecast results, including all classes; it was found that the MA model had a total average of 84.16 percent 

(±9.87), which was less than the MARF model, which had an average total of 92.59 percent (±4.39). When 

comparing the average percentage accuracy of the 3-hour advance forecast results for all classes, it was found 

that the MA model had an overall average of 83.80 percent (±9.96), which was less than the MARF model, 

which had an overall average of 89.29 percent (±6.33). When comparing the average percentage accuracy of 

the 6-hour forecast results for all classes, it was found that the MA model had an overall average of 83.23 

percent (±10.14), which was less than the MARF model, which had an overall average of 84.50 percent (±9.54). 
When comparing the average percentage accuracy of the 12-hour forecast results for all classes, it was found 

that the MA model had an overall average of 82.49 percent (±10.34), which was higher than the MARF model, 

which had an overall average of 80.12 percent (±12.74). When comparing the average percentage accuracy of 

the 24-hour forecast results for all classes, it was found that the MA model had an overall average of 80.18 

percent (±11.71), which was higher than the MARF model, which had an overall average of 78.06 percent 

(±15.26). The above comparison results show that in the 1, 3, and 6-hour forecasts, the MARF model is more 

accurate than the MA model. Still, when the estimates are extended 12 and 24 hours in advance, the MA model 

is more accurate than the MARF model. Moreover, the candlestick chart also shows that the MA forecast has 

an average standard deviation between 9.87 and 11.71, which mostly stays the same compared to the MARF 

model; the average standard deviation has increased accordingly. More extended forecast periods are 4.39, 

6.33, 9.54, 12.74, and 15.26. 
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Figure 9. Average accuracy (%) of MA and MARF methods, distributed hourly. 

 

Figure 9 reveals a significant finding in our comparative analysis. The MARF forecast, when compared 

to the MA forecast, demonstrated a higher average percentage accuracy from 11:00 AM to 11:00 PM. This was 

particularly articulated during the period 00:00 AM to 10:00 AM of the day. Meanwhile, the average 

percentage accuracy of MA forecasts remained constant throughout the day. One notable difference we 

observed was in the variability of the forecasts. The candlestick chart shows that the MARF forecasts have a 

more spread-out mean standard deviation than the MA forecasts. 

Table 1. A comparison of the data analysis results of the MA and MARF methods on an hourly basis. 

Methods Acc. Precis. Recall F1 Spec. 

1hr 
MA 84.16 50.57 59.78 52.81 89.26 

MARF 92.59 76.10 8.27 79.18 95.19 

3hr 
MA 83.80 49.67 18.93 51.79 89.03 

MARF 89.29 65.20 11.05 68.81 93.01 

6hr 
MA 83.23 48.09 55.29 49.98 88.66 

MARF 84.50 51.45 64.42 54.44 89.73 

12hr 
MA 82.49 46.14 21.28 47.61 88.17 

MARF 80.12 37.68 54.08 38.60 86.70 

24hr 
MA 80.18 41.47 43.78 42.34 86.53 

MARF 78.06 30.60 43.47 28.90 85.07 

 

Refer to Table 1 and Figure 10, showing the results of the comparative analysis of Accuracy, Precision, 

Recall, F1 Score, and Specificity of forecasts using MA and MARF methods 1, 3, 6, 12, and 24 hours in advance. 

Accuracy's comparative analysis found that the MARF one-hour forecast is accurate at 92.59 percent, more 

than the MA model, which has an average accuracy of 84.16 percent. It is in the same direction as the 3-hour 

and 6-hour forecasts, which found that the MARF model had an average percent accuracy of 89.29 and 84.50, 

more than the MA model, which had an average percent accuracy of 83.80 and 83.23, respectively. However, 

when considering the 12-hour and 24-hour forward forecasts, the MA model had an average accuracy 

percentage of 82.49 and 80.18, respectively, compared to the MARF model, which had an average accuracy 

percentage of 80.12 and 78.06, respectively. This is consistent with the hourly average accuracy percentage 

analysis. One key takeaway from our results is the noticeable impact of more extended advance forecasts on 

accuracy. As the forecast duration increases, the accuracy of the forecasts is affected. 
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Figure 10. A comparison of the data analysis results of the MA and MARF methods on a 1, 3, 6, 12, and 24 

hours in advance. 

  

 When considering the Precision, it is also found to correspond to the Accuracy value. The 1, 3, and 6-hour 

forecasts using the MARF method have averages of 76.10, 65.20, and 51.45 percent, respectively, higher than 

those of the MA method, with averages of 50.57, 49.67, and 48.09 percent. On the other hand, when forecasting 

12 and 24 hours in advance, MARF had an average precision percentage of 37.68 and 30.60, less than MA, 

which had an average of 46.14 and 41.47 percent, respectively. When considering recall, it was found that the 

1-and 3-hour forecasts using the MARF method had an average of 8.27 percent and 11.05 percent, less than the 

MA method, which had an average of 59.78 percent and 18.93 percent, respectively. On the other hand, when 

forecasting 6, 12, and 24 hours in advance, it was found that MARF had average recall percentages of 64.42, 

54.08, and 43.47, higher than MA, which had average percentages of 55.29, 21.28, and 43.78, respectively. This 

shows that MARF forecasting can recall long-term forecasts better than MA forecasting. On the other hand, 

MA forecasts have better short-term recall ability. 

In addition, when considering the F1-Score, which shows the model's performance by taking Precision 

and Recall values to calculate the Harmonic Mean, it was found that MA forecasts have average percentages 

of 1, 3, 6, 12, and 24 percent, with forecasts of 52.81, 51.79, 49.98, 47.61, and 42.34 percent. The trend decreases 

with longer forecast periods. While the MARF forecasts had average percentages of 1, 3, 6, 12, and 24 percent 

of forecasts at 79.18, 68.81, 54.44, 38.60, and 28.90, the trend decreased with more extended forecasts. When 

comparing the F1-Score, it was found that the MA forecast was 48.91 percent, lower than the MARF's 53.98, 

indicating that the MARF was more effective. 

 Finally, considering the Specificity, it was found that the MA forecasts are 1, 3, 6, 12, and 24 hours 

ahead. The results were 89.26, 89.03, 88.66, 88.17, and 86.53 percent, with a slightly decreasing trend. The 

MARF forecast is 1, 3, 6, 12, and 24 hours ahead. The results were 95.19, 93.01, 89.73, 86.70, and 85.07 percent, 

with a slight decrease in trend. 

Table 2 compares the average Accuracy, Precision, Recall, F1, and Specificity percentage, separated by 

class. It was found that class 5, the MARF model, has the highest Accuracy at 97.28, and the MA model is next 

at 96.34 in the same class, respectively, as shown in Figure 11 (a). Meanwhile, MARF and MA in class 3 have 

the highest precision values, 82.07 and 69.48, respectively, as shown in Figure 11 (b). For Recall, the MARF 

and MA models in Class 1 had the highest values of 94.16 and 83.47, respectively, as shown in Figure 11 (c). 

The MA model of class 1 and the MARF model of class 3 have the highest F1 values of 71.44 and 70.13, 

respectively, as shown in Figure 11 (d). For Specificity, it was found that MARF and MA models in class 5 had 

the highest values of 97.78 and 97.21, respectively, as shown in Figure 11 (e). 
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Table 2. A comparison of the data analysis results of the MA and MARF methods on a Class basis. 

 

Class 

1 2 3 4 5 

MA MARF MA MARF MA MARF MA MARF MA MARF 

Accuracy 90.54 89.87 79.54 86.92 71.13 75.11 76.31 75.39 96.34 97.28 

Precision 62.56 49.15 36.91 30.85 69.48 82.07 53.86 67.93 13.13 31.04 

Recall 83.47 94.16 35.05 58.18 56.47 61.66 58.32 55.90 34.69 52.37 

F1 71.44 61.95 35.94 38.28 62.29 70.13 56.00 61.24 18.86 38.32 

Specificity 91.77 89.55 88.22 88.50 81.87 87.80 82.60 86.06 97.21 97.78 

 

  

  

 
 

 

Figure 11. A comparison of the data analysis results of the MA and MARF methods on a Class basis. 
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4. Conclusions 

The AQI PM2.5 monitoring and forecasting system was developed, and the experimental results show 

that it can monitor and forecast PM2.5 according to the objective. Moreover, the system has a user-friendly 

interface. It displays PM2.5 concentration status notifications in a 5-color level visual symbol that is easily 

recognizable according to Thailand's AQI-PM2.5 measurement standard. This feature ensures that users can 

navigate the system with ease and comfort. Unlike most similar studies, which focus solely on machine 

learning forecasting algorithms, our system stands out as a more comprehensive framework. It begins with 

sensors for data collection, aggregates the data, and sends it to a MySQL database and cloud computing using 

an ESP32 board. This comprehensive approach instills confidence in the system's capabilities. It then 

demonstrates the processing of time-series forecasts with moving averages compared to a combination of 

moving averages and random forest, a popular machine learning model. It also showcases current and 

historical data, especially the five-level notification symbols, making it easy for users to understand through 

mobile and web applications. While the current system is effective, there is always room for improvement. 

The system's future looks promising, with the potential to conduct more extended experiments 

covering all seasons and expand the station installations for more data collection. This information will make 

the audience feel optimistic about the system's development. Considering the cloud's processing load, it may 

also integrate other machine learning models, such as ANN, XGBoost, Gradient Descent, and LSTM. The cloud 

must train the model every hour using all the available data in the database, which can be a heavy workload. 

The researcher may adjust the time to teach the system to be less suitable for the model. 

When comparing the effectiveness and accuracy of the prediction results with similar research that 

forecasts only time-series PM2.5 and is a forward prediction class, it is found that the prediction results of this 

research using MARF have a Total average accuracy of 84.91%. That is slightly better than Masinde, Gitahi, & 

Hahn (2020) [35, 36], which achieved an average of 82.00% using a Stochastic gradient descent model with a 

Gated Recurrent Unit (GRU), which has a more complex computation. 
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MA MARF 
1h
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C
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Actual 

S
u

m
 

1 2 3 4 5 

P
re

d
ic

t 

1 250 30 0 0 0 280 

2 108 149 66 32 0 355 

3 40 120 529 210 12 911 

4 0 31 131 337 45 544 

5 0 0 0 11 10 21 

Sum 398 330 726 590 67 2111 
 

1h
r 

C
la

ss
 

Actual 

S
u

m
 

1 2 3 4 5 

P
re

d
ic

t 

1 311 8 0 0 0 319 

2 31 206 17 0 0 254 

3 8 75 657 80 12 832 

4 48 41 52 503 12 656 

5 0 0 0 7 43 50 

Sum 398 330 726 590 67 2111 
 

3h
r 

C
la

ss
 

Actual 

S
u

m
 

1 2 3 4 5 

P
re

d
ic

t 

1 249 36 0 0 0 285 

2 106 139 67 41 0 353 

3 43 123 525 205 13 909 

4 0 32 132 333 44 541 

5 0 0 2 11 10 23 

Sum 398 330 726 590 67 2111 
 

3h
r 

C
la

ss
 

Actual 

S
u

m
 

1 2 3 4 5 

P
re

d
ic

t 

1 267 11 1 1 0 280 

2 40 158 21 1 0 220 

3 19 104 630 118 20 891 

4 72 57 74 460 16 679 

5 0 0 0 10 31 41 

Sum 398 330 726 590 67 2111 
 

6h
r 

C
la

ss
 

Actual 

S
u

m
 

1 2 3 4 5 

P
re

d
ic

t 

1 246 42 0 0 0 288 

2 107 128 67 52 3 357 

3 45 126 519 203 12 905 

4 0 34 136 324 43 537 

5 0 0 4 11 9 24 

Sum 398 330 726 590 67 2111 
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C
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S
u
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P
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d
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t 

1 194 14 3 3 0 214 

2 34 97 22 4 0 157 

3 39 142 582 167 32 962 

4 131 77 119 399 14 740 

5 0 0 0 17 21 38 

Sum 398 330 726 590 67 2111 
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S
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t 

1 249 49 3 8 0 309 

2 96 110 63 64 8 341 

3 53 130 508 195 10 896 

4 0 41 143 312 41 537 

5 0 0 9 11 8 28 

Sum 398 330 726 590 67 2111 
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h
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C
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S
u

m
 
1 2 3 4 5 

P
re

d
ic

t 

1 110 11 0 5 0 126 

2 28 39 20 4 0 91 

3 60 176 557 227 53 1073 

4 200 100 149 347 5 801 

5 0 4 0 7 9 20 

Sum 398 330 726 590 67 2111 
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C
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Actual 

S
u
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1 2 3 4 5 

P
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d
ic

t 

1 251 54 2 22 7 336 

2 81 83 67 82 9 322 

3 65 140 441 192 2 840 

4 1 53 191 283 42 570 

5 0 0 25 11 7 43 

Sum 398 330 726 590 67 2111 
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C
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S
u
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1 2 3 4 5 

P
re

d
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t 

1 96 0 0 0 0 96 

2 8 9 0 9 1 27 

3 88 207 553 283 66 1197 

4 206 110 169 295 0 780 

5 0 4 4 3 0 11 

Sum 398 330 726 590 67 2111 
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MA Class     

 

MA RF Class     

1hr (%) 1 2 3 4 5 X SD Min Max 1hr (%) 1 2 3 4 5 X SD Min Max 

Accuracy 91.57 81.67 72.57 78.21 96.78 84.16 9.87 72.57 96.78 Accuracy 95.50 91.85 88.44 88.63 98.53 92.59 4.39 88.44 98.53 

Precision 62.81 45.15 72.87 57.12 14.93 50.57 22.30 14.93 72.87 Precision 78.14 62.42 90.50 85.25 64.18 76.10 12.49 62.42 90.50 

Recall 89.29 41.97 58.07 61.95 47.62 59.78 18.33 41.97 89.29 Recall 97.49 81.10 78.97 76.68 86.00 84.05 8.27 76.68 97.49 

F1 73.75 43.50 64.63 59.44 22.73 52.81 20.08 22.73 73.75 F1 86.75 70.55 84.34 80.74 73.50 79.18 6.95 70.55 86.75 

Specificity 91.92 89.69 83.58 83.85 97.27 89.26 5.76 83.58 97.27 Specificity 95.15 93.32 94.61 94.02 98.84 95.19 2.15 93.32 98.84 

  

MA Class     MA RF Class     

3hr (%) 1 2 3 4 5 X SD Min Max 3hr (%) 1 2 3 4 5 X SD Min Max 

Accuracy 91.24 80.81 72.29 77.97 96.68 83.80 9.96 72.29 96.68 Accuracy 93.18 88.92 83.09 83.47 97.82 89.29 6.33 83.09 97.82 

Precision 62.56 42.12 72.31 56.44 14.93 49.67 22.30 14.93 72.31 Precision 67.09 47.88 86.78 77.97 46.27 65.20 17.96 46.27 86.78 

Recall 87.37 39.38 57.76 61.55 43.48 57.91 18.93 39.38 87.37 Recall 95.36 71.82 70.71 67.75 75.61 76.25 11.05 67.75 95.36 

F1 72.91 40.70 64.22 58.89 22.22 51.79 20.30 22.22 72.91 F1 78.76 57.45 77.92 72.50 57.41 68.81 10.66 57.41 78.76 

Specificity 91.84 89.14 83.28 83.63 97.27 89.03 5.87 83.28 97.27 Specificity 92.85 90.90 92.13 90.92 98.26 93.01 3.05 90.90 98.26 

  

MA Class     MA RF Class     

6hr (%) 1 2 3 4 5 X SD Min Max 6hr (%) 1 2 3 4 5 X SD Min Max 

Accuracy 90.81 79.58 71.91 77.31 96.54 83.23 10.14 71.91 96.54 Accuracy 89.39 86.12 75.18 74.80 97.02 84.50 9.54 74.80 97.02 

Precision 61.81 38.79 71.49 54.92 13.43 48.09 22.75 13.43 71.49 Precision 48.74 29.39 80.17 67.63 31.34 51.45 22.27 29.39 80.17 

Recall 85.42 35.85 57.35 60.34 37.50 55.29 20.20 35.85 85.42 Recall 90.65 61.78 60.50 53.92 55.26 64.42 15.04 53.92 90.65 

F1 71.72 37.26 63.64 57.50 19.78 49.98 21.15 19.78 71.72 F1 63.40 39.84 68.96 60.00 40.00 54.44 13.64 39.84 68.96 

Specificity 91.66 88.48 82.84 83.10 97.22 88.66 6.07 82.84 97.22 Specificity 89.25 88.08 87.47 86.07 97.78 89.73 4.65 86.07 97.78 

  

MA Class     MA RF Class     

12hr (%) 1 2 3 4 5 X SD Min Max 12hr (%) 1 2 3 4 5 X SD Min Max 

Accuracy 90.10 78.64 71.29 76.17 96.26 82.49 10.34 71.29 96.26 Accuracy 85.60 83.75 67.55 66.98 96.73 80.12 12.74 66.98 96.73 

Precision 62.56 33.33 69.97 52.88 11.94 46.14 23.54 11.94 69.97 Precision 27.64 11.82 76.72 58.81 13.43 37.68 28.85 11.82 76.72 

Recall 80.58 32.26 56.70 58.10 28.57 51.24 21.28 28.57 80.58 Recall 87.30 42.86 51.91 43.32 45.00 54.08 18.92 42.86 87.30 

F1 70.44 32.79 62.64 55.37 16.84 47.61 22.21 16.84 70.44 F1 41.98 18.53 61.92 49.89 20.69 38.60 18.75 18.53 61.92 

Specificity 91.73 87.57 82.06 82.34 97.17 88.17 6.43 82.06 97.17 Specificity 85.49 85.59 83.72 81.45 97.23 86.70 6.12 81.45 97.23 

  

MA Class     MA RF Class     

24hr (%) 1 2 3 4 5 X SD Min Max 24hr (%) 1 2 3 4 5 X SD Min Max 

Accuracy 89.01 76.98 67.60 71.86 95.45 80.18 11.71 67.60 95.45 Accuracy 85.69 83.94 61.30 63.05 96.31 78.06 15.26 61.30 96.31 

Precision 63.07 25.15 60.74 47.97 10.45 41.47 22.96 10.45 63.07 Precision 24.12 2.73 76.17 50.00 0.00 30.60 32.44 0.00 76.17 

Recall 74.70 25.78 52.50 49.65 16.28 43.78 23.17 16.28 74.70 Recall ##### 33.33 46.20 37.82 0.00 43.47 36.15 0.00 ##### 

F1 68.39 25.46 56.32 48.79 12.73 42.34 22.79 12.73 68.39 F1 38.87 5.04 57.51 43.07 0.00 28.90 25.12 0.00 57.51 

Specificity 91.72 86.19 77.58 80.08 97.10 86.53 8.07 77.58 97.10 Specificity 85.01 84.60 81.07 77.84 96.81 85.07 7.18 77.84 96.81 

 


