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Abstract: The classification of maize (Zea mays) is crucial for agricultural
efficiency, breeding programs, and market specifications. The EfficientMaize
dataset was utilized alongside Google’s Teachable Machine to develop a model
separating maize varieties into classes: Bhihilifa, SanzalSima, and WangDataa.
As a result, the study demonstrated that user-friendly machine learning tools
are helpful in agriculture since they delivered high accuracy rates, such as 99%
in Bhihilifa, 95% in SanzalSima, and 85% in WangDataa. This paper also
emphasizes how modern machine-learning technologies can be accessible to
farmers and researchers through tools such as Google’s Teachable Machine,
which does not require coding knowledge or online expertise. To validate the
results obtained with Google Teachable Machine, further analyses were
conducted using RESNET-50. These findings add to previous studies on deep
learning and hyperspectral imaging, leading to seed classification by increasing
the potential of using machine learning to improve agricultural practices and
food security.

Keywords: Maize classification;, Machine learning; Agricultural technology;
EfficientMaize dataset; Sustainable farming.

1. Introduction

Corn is an important nutritional resource for both humans and animals.
This product is also quite suitable for agricultural purposes in Tiirkiye and
eligible for commercial animal feeding. Corn has high nutritional value and also
has a high portion of yield and a well-adaptation potential [1]. Thus, the
production of corn in Tiirkiye is popular. Although there are many corn
varieties, 7 popular corn varieties are produced worldwide [2]. As in other
agricultural production, yield and product quality in corn production are
indispensable elements for agricultural processes [3]. To ensure seed quality and
purity, the categorization of maize varieties is crucial for farming operations and
agricultural research [4]. Classification of seed varieties, including maize seeds,
is important for producers and farmers to maintain variety purity and product
yield [5]. However, classifying corn seeds is not very easy. Maize seeds of
different varieties are very similar, with significant overlap in morphology and
color characteristics. Thus, it is very important to classify them using machine
learning since mechanical classification does not make it possible to distinguish
between species. Machine learning has become increasingly important in
various technical breakthroughs [6]. Machine learning, a sub-field of artificial
intelligence, improves computational algorithms with practice and makes
precise analyses and predictions using training data [7].
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The subject of machine learning is a very broad field. It involves supervised machine learning to
develop predictive models based on the training data. In unsupervised machine learning, it aims to group
observations or create simplified representations of the main structures within the data [8]. Each example in
machine learning consists of a set of features or expressions that describe the situation in question. The training
set is the set of examples the proposed algorithm uses to learn, and the test set is the set of new and never-
before-seen cases it uses to see how good it is at classification [9]. Machine learning has become increasingly
available in every field. For example, in food classification [10], improving the net yield rate of crops in a
particular season [11] or product selection based on geographic information systems (GIS) and multi-criteria
decision analysis (MCDA) was achieved [12].

There have been many new approaches to machine learning, and recently, a lot of research, such as
herbal plant classification [13], leaf classification [14], plant disease detection [15] or fruit classification [16] has
been done with the Google Teachable Machine tool because it enables fast and mobile use. Google Teachable
Machine is a machine learning tool. It has a graphical user interface (GUI), and its usage depends on its
platform. Teachable Machine is based on TensorFlow[17]. Previous studies have shown that cutting-edge
technologies such as deep learning algorithms, machine vision, and hyperspectral imaging can improve the
accuracy and speed of maize seed classification [18]. New studies have focused on developing low-cost tools
and processes to increase the accessibility of these technologies [19]. Some recent studies have focused on low-
cost and fast processing for certain corn varieties, and researchers have developed applied machine learning
algorithms [20, 21].

Efficiency is very important in agricultural areas, and one of the important factors affecting
productivity is the selection and classification of seeds. In this context, varieties of corn seeds have different
growth needs. At the same time, these seeds do not have the same tolerance to pests and diseases. Also, precise
classification helps agricultural workers choose the right variety for their specific conditions. This helps
improve the management of products and increase technical efficiency [22]. However, classification is also
advantageous for breeding programs. Growers must use the right grade of seeds for the R&D and P&D
activities they want. Correct classification ensures the use of appropriate genetic materials on the subject. This
subsequently aids the reproductive process [23]. Another important classification aspect is delivering the right
product to the right buyer. Products with high commercial value suffer financial losses if the correct
classification is not made. In other words, farmers working on this issue will not have problems meeting
market demand and can increase their profits if their products are classified correctly [24].

As artificial intelligence has become increasingly widespread in recent years, significant progress has
been made in agriculture. Classification studies using Al, along with forecasting [25], IoT[26], and prediction
studies [27], have gained momentum. Recent works include studies such as "Maize Seed Variety Identification
Using Hyperspectral Imaging and Self-Supervised Learning: A Two-Stage Training Approach Without
Spectral Preprocessing” [28] and "Maize Seeds Forecasting With Hybrid Directional and Bi-Directional Long
Short-Term Memory Models." [24] Additionally, studies like "Maize Seed Variety Classification Using Image
Processing” [29] have been conducted in image processing. The growing use of YOLO has also been seen in
studies such as "Soft X-ray Image Recognition and Classification of Maize Seed Cracks Based on Image
Enhancement and Optimized YOLOv8 Model." [30]

There are different datasets containing corn types. In this study, the dataset named EfficientMaize was
used. The main goal in creating the dataset is to classify corn on low-performing devices [31]. This study aimed
to separate the seeds into three types: Bhihilifa, SanzalSima, and WangDataa, using artificial intelligence and
transfer learning. Transfer learning and artificial intelligence were used to differentiate the seeds by taking
advantage of current technological developments, and the study was carried out with the Google Teachable
Machine tool, a machine learning tool.

2. Materials and Methods

2.1 Dataset used for the study

In this study, the EfficientMaize dataset was used. This dataset contains 4,846 images as raw and
17,724 images as augmented. The images were randomly rotated by 20 degrees, shifted horizontally and
vertically by 20% of the image width and height, respectively. A maximum angle shift transformation of 0.2
radians was applied, and brightness adjustments were made in the range of 0.5 to 1.5. After these
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transformations, the newly created pixels were filled using the nearest pixel values. The augmented dataset
provided by these processes was applied equally to the dataset to ensure the model was trained on a more
diverse dataset. As a result, the aim was to increase the model's performance. The dataset creators applied
data augmentation techniques. All images had a blue background. Researchers compressed the augmented
images to a size of 128 x 128. Total image size 57.82 MB. The images were captured with a 12 MP iPhone 11
Pro Max device. Display features include a Super Retina XDR display, HDR display, 2,688-by-1,242-pixel
resolution at 458 ppi, True Tone display, and Triple 12MP Ultra-Wide, Wide, and Telephoto cameras [31].
Details of each class of seeds in the dataset are shown in Table 1.

Table 1. EfficientMaize dataset

Crop Categories No. of Classes Background No. of Images
Maize Bhihilifa 1 Blue 6,480
Maize SanzalSima 1 Blue 5,100
Maize WangDataa 1 Blue 6,144

2.2 Google Teachable Machine Model

The Google Teachable Machine model used in this study is based on the MobileNet architecture, a
lightweight convolutional neural network (CNN) specifically designed for mobile and resource-constrained
environments. MobileNet employs depthwise separable convolutions, significantly reducing the
computational complexity compared to traditional CNNs. This makes it an ideal choice for real-time
applications, such as those in agricultural technology [32]. The architecture consists of the following layers:
Input Layer: This accepts image inputs and is resized to 224x224 pixels, as the MobileNet architecture requires.
Depthwise Separable Convolutions: These layers break down standard convolutions into two parts: a
depthwise convolution (which filters each input channel separately) followed by a pointwise convolution
(which combines these filtered outputs). This reduces the number of parameters and computations. Batch
Normalization and ReLU Activation Functions: After each convolution operation, batch normalization is
applied to stabilize and speed up training, followed by a Rectified Linear Unit (ReLU) activation function to
introduce non-linearity into the model. Global Average Pooling: Reduces the spatial dimensions of the feature
maps to a single value for each feature, thus minimizing overfitting and reducing the overall model
complexity. Fully Connected Layer: The final layer of MobileNet is a fully connected layer that outputs
predictions based on the learned features [33]. Additionally, transfer learning was employed using the pre-
trained weights from ImageNet, a large dataset used to initialize the model with general image features. This
allows the model to adapt quickly to our specific maize classification task by fine-tuning the final few layers
while keeping the pre-trained layers fixed, thus leveraging existing learned features from similar image
classification tasks [33].

The computational efficiency of the Google Teachable Machine, based on the MobileNet architecture,
is one of its primary strengths, especially for practical agricultural applications where real-time or near-real-
time inference may be required. Our study found that the inference time for Google Teachable Machine (GTM)
was 6 ms, making it exceptionally fast for real-time applications, while ResNet50 had an inference time of 18
ms. Although ResNet50 is still reasonably fast, GTM’s lower latency makes it more suitable for mobile and
resource-constrained environments where real-time decisions are crucial, such as agricultural fieldwork. The
differences in training time are equally significant. ResNet50 required 34 minutes and 19 seconds for training,
while Google Teachable Machine only took 4 minutes and 53 seconds, demonstrating the efficiency of GTM
in inference and the training phase. The short training time makes GTM more practical and valuable for
scenarios where frequent retraining or model parameter updates may be required, such as adapting to
changing agricultural conditions or adding new crop species to the dataset, making GTM more practical.
Therefore, GTM is suitable for practical agricultural applications where both speed and computational
efficiency are critical. The substantial reduction in training and inference times allows the model to be
deployed on lower-end devices without compromising performance, enabling widespread use by farmers or
agricultural technicians in real-world settings.
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2.3 Training the Model

For the training phase of the model, the entire dataset was randomly divided into two main parts:
training (85%) and test sets (15%) by default in Google Teachable Machine. There are some optimization
possibilities for the training process with the Google Teachable Machine tool. The number of epochs, batch
size, and learning rate adjustments for these optimization processes were determined before training, and the
relevant settings are shown in Table 2.

Table 2. Model parameters

Model Epochs Batch Size Learning Rate
Teachable Machine 50 16 0.001

There is some preliminary parametric process in determining these parameters, and the relevant
parameters are determined as a result of routine experiments in standard machine learning processes [34].
After this optimization process, the images in the dataset were transmitted to the Google Teachable Machine
tool with the help of a web tool, as illustrated in Figure 1. Subsequently, the training process was completed
for corn seeds belonging to 3 different classes, specific to each class. The interface can update instantly, and
the performance of the developed model can also be viewed instantly.

= Teachable Machine

Preview T Export Model

WangDataa Input @@ ON File

6144 Image Samples

D‘V L ¥ Q L [.' Training N

SanzalSima

Epochs: 50
100 Image Samples pochs: s0 [

o : AENEEEN  ---o

Bhihilifa

6480 Image Samples

- m] 5 « nEp :

Add a class

Figure 1. This is a figure. Schemes follow the same formatting.

As a basic machine learning process, the testing process was started in the second stage after
completing the training. The model was re-evaluated with the test set. Unlike other machine learning tools,
previews were provided at every stage during this process. The most important criterion of the developed
model is performance evaluation. The main parameters in this evaluation can be listed as the confusion matrix,
per-class accuracy, and overall performance metrics. Data augmentation techniques ensured that the
developed model produced more accurate and sensitive results. More specifically, the dataset is digitally and
artificially augmented. For the resulting model to produce more universal results, rotations, shifts,
translations, and zooms were applied to the raw images [35]. The performance of the results of this model is
determined by critical measurements based on accuracy, precision, recall, and F1 score. Accuracy shows the
pattern of the prediction made with the actual result. Precision is another metric that measures the model's
ability to remove false positives and represents the proportion of positive cases that are correctly and
successfully predicted among all expected positives. Recall evaluates the model's ability to identify positive
cases accurately. How effectively does it capture actual positive cases? The F-1 score takes the harmonic mean
of precision and recall to provide a balanced assessment of the model's predictive performance.
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Calculation formulas of the metrics are given in Table 3.

Table 3. Calculation formulas of metrics

Metric Formula?
Accuracy —TPAN
TP+TN+FP+FN
Precision %
n
Recall L
TP+FN
F1-Score Precision*Recall

Precision+Recall

1 TP: True Positives TN: True Negatives FP: False Positives FN: False Negatives.

2.4 Software and Hardware Specifications
To ensure the reproducibility of the study, the hardware and software features must be known. In this

context, this study was carried out on a workstation with the software and hardware information shown in
Table 4.

Table 4. Software and hardware information

Name Value
OS Name-Version: Microsoft Windows 11 Pro - 10.0.26120
OS Configuration: Standalone Workstation
Original Install Date: 12.04.2024, 14:09:46
System Boot Time: 18.07.2024, 04:18:02
System Model: MS-7C71
System Type: x64-based PC
Total Physical Memory: 32,686 MB
Network Card(s): [01]: Intel(R) Wi-Fi 6 AX201

[02]: Realtek PCle 2.5GbE Family Controller
[03]: Bluetooth Device (Personal Area Network)
Browser Google Chrome (Chromium), Version: 126.0.6478.128 (64-bit)

3.Results and Discussion

After training the model with the EfficientMaize dataset and Google's Teachable Machine, the findings
showed a high level of accuracy in categorizing maize varieties. The accuracy rates for each class were as
follows: Bhihilifa achieved 99%, SanzalSima 95%, and WangDataa 85%, as shown in Table 5.

Table 5. Accuracy for GTM

Model Class Accuracy Samples
Teachable Machine Bhihilifa 0.99 972
Teachable Machine SanzalSima 0.95 765
Teachable Machine WangDataa 0.85 922

The confusion matrix in Figure 2 shows a detailed breakdown of the model's performance, including
the number of instances correctly and wrongly classified for each class. For example, WangDataa has 787
correctly classified instances, 132 misclassified as SanzalSima, and 3 misclassified as Bhihilifa. The lower
accuracy of WangDataa (85%) compared to Bhihilifa (99%) and SanzalSima (95%) could be due to several
factors. One possible reason is the inherent variability in the visual characteristics of the WangDataa class,
such as differences in color, texture, or shape, making it more challenging for the model to generalize across
all samples.
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Figure 2. Confusion matrix.

Figure 3 shows the accuracy of training and validation throughout 50 epochs. The orange line depicts
validation accuracy, whereas the blue line reflects training accuracy. The model's training accuracy improved
steadily, reaching near-perfect levels, while validation accuracy fluctuated but remained excellent overall.
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Figure 3. Accuracy per epoch.
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Figure 4 shows the training and validation losses over 50 epochs. The blue line represents training
loss, which fell in the first epochs before leveling out, showing effective learning from the training data. The
orange line depicts validation loss, which fluctuated but decreased, showing that the model was successfully
generalizing to new data.

— loss

0.4 — test loss

0.3
W
z
= 0.2+ 49

lozs: 0.00691363803352
01 test loss: 0. 309637516737
0.0 T T ] T ]
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Figure 4. Loss per epoch.

Such evaluations and visual presentations throughout the testing process are critical for verifying the
machine learning model's reliability and usability for the entire system. They help ensure the program runs
successfully in real-world circumstances, which are critical to user pleasure and safety.

Results
Training Progress (05-Jul-2024 14:04:33)
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Figure 5. The training progress of ResNet-50.
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ResNet-50's distinct architecture, which combines residual connections and a bottleneck structure,
allows it to efficiently address the issues of training deep neural networks. Resnet-50 was used to verify the
Google Teachable Machine results. For the Resnet-50, the entire dataset was randomly divided into two main
parts: training (80%) and test sets (20%). For ResNet-50, the entire dataset was randomly divided into 80% and
20% training and test datasets for each class. For the training of the ResNet-50 model, standard training
configurations of MATLAB were used to ensure stable performance. The ‘adam’ optimizer, known for its
efficiency and adaptability in training deep learning models, was used. The mini-batch size was set to 32, a
commonly used value, to balance memory efficiency and training speed. The learning rate was initialized at a
typical setting of 0.0001 to achieve a stable and effective learning process without straining the convergence
ability of the model. The model was trained for 10 epochs, and validation data was provided every 30 iterations
to prevent overfitting of the model, thus running an effective learning process to increase the model's
generalization ability. The data was shuffled in each epoch to ensure that the training data was exposed to the
model in various ways. These choices were guided by standard practices in the machine learning literature
and preliminary experiments, ensuring optimal model performance across various applications. MATLAB's
default settings were used as they are well-regarded for producing consistent and successful results in deep
learning tasks. Figure 5 depicts the training progress of Resnet-50, and Table 6 contains the Resnet-50 results.

Table 6. Software and hardware information

Parameter Result
Validation accuracy 99.39%
Training finished Max epochs completed
Training elapsed time 236 min 34 sec
Training epoch cycle 10 of 10
Iteration 9,480 of 9,480
Iteration per epoch 948
Max Iteration 9,480
Validation Frequency 30 iterations
Hardware resource Single GPU
Learning rate schedule Constant
Learning rate 0.0001

Figure 6 shows the precision-recall and ROC curves for ResNet-50.

Precision-Recall Curve ROC Cunve

Precsor

(a) (b)
Figure 6. (a) Precision-Recall Curve, (b) ROC Curve.

Figure 7 shows the confusion matrix of the test dataset for ResNet-50.
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Figure 7. Confusion matrix of ResNet-50.

Table 7 shows the findings from Google Teachable Machine and ResNet-50, highlighting the precision,
recall, and F1-score for the classes "Bhihilifa," "SanzalSima," and "WangDataa."

Table 7. Accuracy of ResNet-50

Class Samples Precision Recall F1-Score Accuracy
Bhihilifa 1296 1.00 1.00 1.00 1.00
SanzalSima 1020 0.99 1.00 0.99 1.00
WangDataa 1229 1.00 0.99 0.99 0.99

The research shows that both classes' models have exceptionally high-performance metrics. The
precision and recall values of classes “Bhihilifa,” “SanzalSima,” and “WangDataa” are consistently higher than
0.99, indicating a high level of classification accuracy. The accuracy, recall, and F1-Score value of the Bhihilifa
class was 1.00, the precision and F-1 Score of the SanzalSima class was 0.99, while the recall value was 1.00.
The recall and F1 score of WangDataa was 0.99, and the precision value was 1.00. Our results are consistent
with recent studies on maize seed classification; [36, 37] however, GTM outperforms all these studies in terms
of faster training, testing, and validation times, although its accuracy is slightly lower. However, it is
anticipated that as the dataset grows, the learning curve will improve, increasing accuracy. Currently, one of
the limitations of this platform is the maximum limit of 10,000 images per class.

When all the results were evaluated, the accuracy rate of the Bhihilifa class was found to be 99%, and
this value was also quite high in classification success. Considering agricultural practices, it has been reported
that this high-value classification success will also be advantageous to ensure seed quality and purity, which
are very important for basic parameters such as yield and sustainability [4]. The accuracy values of the other
two classes, SanzalSima and WangDataa, were 95% and 85%, respectively. Although these values were lower
than the Bhihilifa class, it was thought that the model could be further improved by using different data
augmentation techniques or optimization of preliminary parameter values, as mentioned before.
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After a classifier is trained, the confusion matrix is generated by that classifier on a validation set. It
can be used to find out which classes present some confusion in the classification, and then a more customized
classification structure can be created [38]. When the confusion matrix of this study is examined, it is seen that
the matrix values of two classes (WangDataa and SanzalSima) are higher than the other class (Bhihilifa). In
other words, there is a possibility of confusion in classifying these two species. To prevent this, further
optimization processes can be applied, or the training phase can be strengthened by increasing the source
images to improve the model. When the model's training process was examined, it was observed that the
training loss was reduced, and the training accuracy was high. These results show that the model is quite
successful on the training set side. However, approaches to reduce overfitting should be used when evaluating
model performance, validation accuracy, and loss oscillations. These approaches may be validation accuracy,
loss oscillations, dropout regularization, or cross-validation [39]. Different machine-learning techniques have
been applied to classify corn [40-42], and researchers have emphasized that low-cost devices and procedures
should be prioritized when classifying [43, 44].

The implementation of this technology in real-world agricultural settings has the potential to enhance
productivity and decision-making efficiency significantly. Farmers can reduce the time and labor required for
manual seed sorting by Al-based maize seed classification, leading to more accurate and rapid processing.
Using machine learning models like Google Teachable Machine in the field can also enable mobile-based
solutions, allowing for on-the-spot classification with minimal infrastructure requirements. Economically,
such technology could save costs by reducing the need for specialized labor and minimizing errors in seed
selection, ultimately leading to higher crop yields [45]. However, challenges remain in the widespread
adoption of this technology, including initial setup costs, the need for reliable internet connectivity in rural
areas, and the integration of Al systems with existing farming equipment [46]. Further, it is necessary to
ensure that these systems are adaptable to various crops and growing conditions to make them broadly
applicable in diverse agricultural environments[47]. Future research could expand the model to classify
additional maize varieties or adapt it for other crops like wheat or rice. Incorporating larger, more diverse
datasets would enhance the model's generalization. Improvements could also include using more advanced
neural networks, such as transformers, and domain-specific augmentations to increase robustness [48].
Additionally, integrating the system with IoT sensors or automated machinery could create comprehensive
smart farming solutions, enabling real-time monitoring and decision-making [49]

This study investigated the classification success of different corn varieties with machine learning and
transfer learning approaches using the Google Teachable Machine tool, which is low-cost, fast, and highly
accurate, as the researchers suggested. There is no statistically significant difference (p<0.01) between the two
models' weighted accuracies. The analysis and test results showed that these three types of corn seeds could
be classified successfully and accurately. At the same time, this has shown that it is applicable in many
agricultural applications due to its low costs and flexible structure. The accuracy of the results was evaluated
by comparing them with ResNet-50, a well-known and successful method. As a result, this method is thought
to be widely used in the classification of corn seeds and will be the basis for future studies that may
include more varieties.

4. Conclusions

Maize (Zea mays), known as corn, is one of the world's most important grain crops. Correct
classification of corn varieties is important in many areas as it is one of the basic foodstuffs for humanity and
an important component of animal feed and various industrial products. This study proposes using Google's
Teachable Machine to successfully differentiate maize seeds belonging to Bhihilifa, SanzalSima, and
WangDataa species. In this study using the EfficientMaize dataset, it was observed that Bhihilifa was
successfully classified with 99% accuracy, SanzalSima with 95% accuracy, and WangDataa with 85% accuracy.
These findings suggest that using Google's Teachable Machine will increase the accessibility and usefulness
of modern machine learning technology in agricultural applications. It can be run on low-cost devices, thus
demonstrating the potential of machine learning techniques to increase precision and efficiency in agricultural
applications. The most important findings of the research are high classification accuracy, improvement
potential, and usability of machine learning. The model has been highly successful in classifying maize species,
especially Bhihilifa. SanzalSima and WangDataa's classification performance has been achieved with relatively
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lower accuracy than Bhihilifa. Still, it is thought that the performance will be increased by improving the model
with new data and various optimizations. It has been evaluated that when the advantages obtained from the
model and the new technologies to be developed are paired with user-friendly tools, they can be widely used
in agricultural practices by improving seed quality evaluation, breeding program assistance, and
marketability of agricultural products.
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