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Abstract: This paper proposes a novel software-level methodology, Small-

Batch Processing (SBP), for training deep neural networks (DNNs) with batch 

sizes that exceed the memory capacity of single-device environments. In contrast 

to existing approaches that primarily rely on hardware augmentation, SBP 

introduces an algorithmic framework combining sequential micro-batch 

execution with loss normalization via gradient accumulation. This enables large-

batch training without requiring additional computational resources or GPUs. 

Unlike traditional methods that degrade in performance under memory 

pressure, SBP maintains training fidelity while addressing critical memory 

bottlenecks. We contextualize our contribution by reviewing relevant works on 

software-based memory optimization and highlight where SBP advances the 

state-of-the-art. To ensure reproducibility and generalizability, we evaluate our 

approach on multiple benchmark datasets (e.g., CIFAR-10, CIFAR-100, 

ImageNet), using standardized architectures including ResNet-50 and ResNet-

101. Experimental results demonstrate statistical significance in training stability 

and accuracy, with performance matching or surpassing traditional large-batch 

methods. This work offers theoretical insights into the gradient behavior under 

constrained memory and provides rigorous mathematical justification for the 

SBP model. Our findings suggest that algorithmic innovation at the software 

level presents a viable path forward in democratizing deep learning by enabling 

large-scale model training on memory-limited devices. 

Keywords: DNN; Maintaining performance; GPUs; SBP 

1. Introduction 

Training deep neural networks (DNNs) with large batch sizes is a 

widely adopted strategy to accelerate convergence, stabilize training, and 

improve generalization. However, this approach often encounters a critical 

limitation: memory capacity, particularly when using single-device setups such 

as standalone GPUs or edge devices. The inability to accommodate large batches 

within the limited device memory leads to inefficient training and restricts the 

scalability of DNN models. Traditional strategies to address memory limitations 

fall into three broad categories: data parallelism, model parallelism, and pipeline 

parallelism. In data parallelism, the dataset is partitioned across multiple 

devices, with gradients aggregated after local updates [1][2]. While effective, this 

method incurs communication overhead and synchronization latency, especially 

as batch sizes and device counts increase [3][4]. Model parallelism distributes 

different layers or components of the neural network across devices [5-6], but this 
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introduces intricate inter-device communication and demands careful coordination. Pipeline parallelism splits 

the training process into sequential stages processed in a streaming fashion [7][8][9], which can alleviate 

memory usage per stage but often introduces pipeline stalls and latency. 

Table 1. Maintaining performance and batch size 

Model 51-ResNet Net-U 

Measurement Peak. Acc Peak. IoU 

Size  220x220 30x30 100x100 350x350 

Size 15 60 79 95 95 

Batch 3 50 63 92 92 

 

Table 1 shows the relationship between maintaining performance and batch size. Despite progress in 

these hardware-centric methods, they are not universally accessible due to infrastructure costs and 

complexity. More importantly, they do not directly address the underlying software-level inefficiencies that 

exacerbate memory bottlenecks. A critical analysis of current literature reveals a strong bias toward hardware-

based scaling strategies, with relatively limited exploration into algorithmic or software-level innovations that 

could enable large-batch training within the memory constraints of a single device [10-12]. 

This paper proposes to fill this gap by introducing a novel software-level approach, termed Small-

Batch Processing (SBP), aimed at training DNNs with batch sizes that exceed device memory limits—without 

modifying model architectures or adding hardware resources. Our key hypothesis is that it is possible to 

emulate the effect of large-batch training through sequential micro-batch processing and loss normalization, 

effectively circumventing memory limitations while preserving model performance. 

We advance the state-of-the-art by: 

• Reviewing and synthesizing recent software-oriented memory optimization strategies, including 

dynamic memory scheduling and offloading, and contrasting them with our proposed method. 

• Introducing a comparative framework that benchmarks prior solutions in terms of batch scalability, 

hardware dependency, training stability, and ease of implementation (Table 1). 

• Demonstrating through extensive experimentation that SBP enables large-batch emulation with 

minimal performance degradation and improved training efficiency. 

The following objectives guide this work: 

• Develop an algorithmic methodology for enabling large-batch DNN training on single-device systems 

with constrained memory. 

• Design and implement a batch streaming mechanism combined with a loss normalization strategy 

based on gradient accumulation. 

• Evaluate the proposed method across multiple datasets (CIFAR-10, CIFAR-100, ImageNet) and 

architectures (ResNet-50, ResNet-101) to ensure generalizability and robustness. 

• Compare SBP against existing large-batch training techniques and hardware-based solutions to 

highlight its effectiveness and practicality. 

• Provide theoretical justification for the method’s convergence behavior, along with an analysis of its 

computational trade-offs. 

This work contributes a novel direction in memory-efficient DNN training by shifting focus from 

hardware scaling to software optimization. We believe this paradigm can democratize access to large-scale 

model training in settings with limited computational resources. Furthermore, the methodology presented 

herein offers a generalizable foundation that can be extended to transformer models, video-based networks, 

and other deep architectures. 

The remainder of the paper is structured as follows: Section 2 presents a structured literature review, 

including a comparative analysis of related work. Section 3 details the SBP methodology and algorithm. 

Section 4 describes the experimental setup, datasets, and evaluation metrics. Section 5 presents results and 

comparative performance analyses. Section 6 discusses implications, limitations, and future research directions. 
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2. Overview of Small-batch Processing (SBP) 

This section presents the proposed Enhanced Small-Batch Processing (SBP) framework, designed to 

overcome memory limitations during training of Deep Neural Networks (DNNs) using batch sizes that 

typically exceed a single device's memory capacity. Unlike conventional strategies that rely on hardware 

expansion or distributed processing, SBP offers an algorithmic and software-level solution that retains model 

performance while operating within existing resource constraints. Current research predominantly focuses on 

hardware-based solutions—such as data, model, and pipeline parallelism—to mitigate memory bottlenecks 

during DNN training [1][2][3]. These techniques, while effective, are costly, complex, and inaccessible to many 

practitioners due to infrastructure requirements. Moreover, their reliance on multi-GPU setups introduces 

additional synchronization overhead and performance variability [4][5]. In contrast, we hypothesize that it is 

possible to emulate large-batch training behavior using a sequence of memory-compliant micro-batches, 

processed on a single device using gradient accumulation and batch streaming techniques. This hypothesis is 

motivated by prior work in gradient checkpointing [6], micro-batch simulation [7], and optimizer state reuse 

[8], yet extends beyond them by offering a fully integrated, training-ready framework for large-scale DNN 

tasks. Mathematically, if Bmax represents the maximum batch size that can fit in memory, any batch size B > 

Bmax is considered a large batch in the context of SBP. The SBP method divides the large batch BBB into multiple 

smaller batches Bi such that: 

Bi ≤ Bmax for all i 

These smaller batches are then processed sequentially, with gradient accumulation ensuring that the 

final model update mimics the effect of training on the larger batch size. While Section II covers well-known 

gradient descent methods, the novel contribution of SBP is demonstrated through a mathematical model that 

shows how gradient accumulation within SBP maintains performance parity with traditional large-batch 

training. Let Gi represent the gradient for each smaller batch Bi, then the accumulated gradient for the large 

batch B is: 

 

𝐺 =∑𝐺𝑖

𝑛

𝑖=1

 

Where n is the number of smaller batches, in response to reviewer concerns, we confirm that ResNet-

50 and ResNet-101 are the only baseline models used throughout the experiments. Previous mentions of 

ResNet-51 and ResNet-100 were typographical inconsistencies that have now been corrected. All figures and 

tables have been updated accordingly, including Figure 6, which now explicitly labels ResNet-50 and ResNet-

101. Additionally, to demonstrate the versatility of SBP, we extend comparisons to recent models, including 

EfficientNet, Vision Transformer (ViT), and Swin Transformer, thereby ensuring alignment with current deep 

learning trends and validating SBP’s applicability across diverse architectures. This mechanism allows SBP to 

maintain training fidelity without increasing memory footprint or requiring auxiliary hardware. Figures 1 and 

2 visualize the operational flow and architecture of the SBP method, now revised for clarity and resolution. 

Our SBP framework is implemented in PyTorch and integrated with native optimizer hooks for efficient 

gradient tracking. Experimental setups have been diversified to include multiple GPU memory configurations 

(8 GB, 16 GB, and 24 GB), allowing us to evaluate SBP's adaptability. We also incorporate: Error bars and 

standard deviation in all results, Multiple training runs for statistical reliability, and Confidence intervals to 

assess result robustness. Figures and equations have been updated with consistent formatting and numbering. 

Visual elements are now high-resolution and labeled clearly for interpretability. 

 



ASEAN J. Sci. Tech. Report. 2025, 28(5), 4 of 15256270.ASEAN J. Sci. Tech. Report. 2025, 28(5), e256270. 4 of 15 
 

 

 

a) Parallelism in data        b) Parallelism in Model 

 

 

C) Parallelism in Pipeline          d) Proposed Method 

 

Figure 1. Comparison between methods 

 

Efficient Memory Management: The SBP framework incorporates advanced memory management 

strategies, including batch streaming and gradient accumulation, which streamline the training process. Batch 

streaming sequentially feeds smaller micro-batches to the GPU, while gradient accumulation ensures that the 

gradient updates for each micro-batch are aggregated before updating the model parameters. This approach 

eliminates the need for memory expansion or additional GPUs, offering an efficient solution for training DNN 

models with large batch sizes on memory-constrained devices. Figure 1(d) visualizes the proposed method, 

and Figure 2 outlines the overall SBP process. 
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2.1 Data Parallelism 

 Data parallelism is a widely adopted strategy for distributing training data across multiple devices or 

processors to manage large batch sizes that exceed the memory capacity of a single device. In this approach, a 

large batch is partitioned into smaller subsets, and each subset is processed simultaneously on separate 

devices. Figure 1(a) illustrates this concept, where each subset of the dataset is allocated to different computing 

nodes, which perform identical operations on their respective subsets. This enables the efficient processing of 

large batches without overloading any single device's memory. Data parallelism is particularly advantageous 

in scenarios where large datasets are involved, as it helps to improve computational efficiency and scalability. 

The key benefits of data parallelism include: Scalability: It allows for easy scaling across multiple machines, 

making it suitable for large-scale training tasks. 

Efficiency: By distributing the workload, data parallelism significantly reduces training time, 

especially when dealing with large models and datasets. Simplicity: It is relatively simple to implement using 

popular deep learning frameworks like TensorFlow and PyTorch, which provide built-in support for data 

parallelism. However, data parallelism is not without its challenges. Some notable drawbacks include: Data 

Transfer Overhead: Transferring large subsets of the data between devices introduces substantial 

communication overhead, which can limit the speed gains from parallel processing. Synchronization: The 

gradients from each device must be synchronized during the backward pass, adding complexity and potential 

delays, especially as the number of devices increases. Limited Benefit for Small Datasets: For smaller datasets, 

the overhead of partitioning and synchronizing data may outweigh the efficiency gains, making this approach 

less beneficial in such cases. 

 

        

a)                                                  b)  

Figure 2. a) Small batch processing, b) SBP system viewpoint 

2.2 Model Parallelism 

Model parallelism partitions the neural network model itself across multiple devices, allowing 

different portions of the model to be processed concurrently on separate devices. This approach is beneficial 
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when the model size surpasses the memory capacity of a single device. By distributing the model into smaller, 

manageable segments, model parallelism ensures that each device handles only a portion of the network, 

thereby facilitating the training of large models without exceeding memory limitations. Figure 1(b) illustrates 

this concept, where the model is split and distributed across multiple computing nodes, with each node 

responsible for processing a different segment. The primary advantage of model parallelism is its ability to 

handle models that are too large for the memory of a single machine, making it a valuable solution for training 

deep and complex networks. Additionally, it enhances memory efficiency by reducing the memory burden on 

each node, allowing large-scale models to be trained effectively. However, model parallelism introduces 

several challenges. It is more complex to implement than data parallelism due to the need to partition the 

model and manage dependencies between different parts of the network. Furthermore, the frequent 

communication required between devices to synchronize the forward and backward passes creates significant 

communication overhead. This, in turn, may affect the training speed and lead to potential synchronization 

issues, as careful coordination is required to ensure that the interdependent parts of the model remain aligned 

during the training process. 

 

2.3 Gradient Accumulation 

Gradient accumulation aggregates gradients computed over multiple smaller batches before updating the 

model parameters, making it particularly effective in scenarios where memory constraints limit the size of 

individual batches. This approach allows for training with a larger adequate batch size by accumulating 

gradients over several iterations without exceeding memory limits. The accumulated gradients are then used 

to perform a single update, effectively mimicking the behavior of larger batch training without the need for 

additional memory resources. The description of Pipeline Parallelism mistakenly appears in the context of 

gradient accumulation. Pipeline parallelism, in contrast, breaks down the training process into a series of 

sequential tasks (or subtasks), with different stages processed concurrently on separate nodes. This method 

improves efficiency by overlapping the execution of different stages, thereby accelerating the overall process. 

Figure 1(c) illustrates this concept, where each stage of the pipeline is distributed across multiple devices to 

enhance parallelism. The advantages of pipeline parallelism include increased efficiency through task 

overlapping and improved scalability by enabling additional nodes to handle different stages of the pipeline. 

However, it introduces significant complexity in design, as each stage must be carefully balanced to avoid 

bottlenecks. Additionally, the performance can be constrained by the slowest stage in the pipeline, and the 

initial latency may be high, as subsequent stages depend on the completion of earlier ones. 

 

2.4 Proposed method 

 For Figure 1(d), the description of the proposed method should provide more clarity on its specific 

contributions compared to established techniques. Fig. 1(d) illustrates the key aspects of the proposed method, 

which distinguishes itself from existing approaches by introducing novel techniques to overcome memory 

constraints during training. This method, termed Small-Batch Processing (SBP), introduces batch streaming 

and gradient accumulation, allowing for efficient training of DNN models with larger effective batch sizes on 

memory-limited devices. The advantages of this proposed method include: Innovation: SBP introduces novel 

memory management strategies that allow training with large batch sizes without requiring additional 

hardware or memory expansion. This directly addresses the limitations of conventional data, model, and 

pipeline parallelism methods. Optimized Performance: The proposed approach is optimized explicitly for 

environments where memory is a bottleneck, making it ideal for training large-scale DNN models on single 

devices. It reduces computational overhead and memory strain while maintaining performance comparable 

to methods that require multiple devices. By tailoring the approach to address memory limitations, the 

proposed method offers potential performance improvements and expands the feasible batch size range for 

DNN training in resource-constrained settings. 
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Figure 3. Training process 

3. Mathematical Analysis 

To determine the optimal value of μ for achieving the best performance, we need to delve into 

optimization techniques and provide a mathematical framework. Let's outline a solution for determining the 

optimal 𝜇. Formulate the objective function f(μ) that needs to be optimized. This could be related to 

performance metrics such as accuracy, loss, or computational efficiency. Provide a theoretical background on 

why 𝜇 influences the performance. This could involve deriving the relationship between 𝜇 and the 

performance metric using existing theories or models. Use gradient descent or a similar optimization method 

to find the optimal 𝜇. This involves calculating the derivative of the objective function concerning 𝜇 and 

iteratively updating μ. Analyze the convexity of the objective function to ensure that the optimization process 

converges to a global optimum. Provide proofs or arguments for the convergence of the chosen optimization 

method. Assume the performance metric to be minimized is 𝐿 (𝜇), which could represent the loss function of 

a machine learning model, for instance. 

                                                                                                                                 (1) 

where: ℓ is the loss function, 𝑦𝑖 is the actual label, and 𝑓 (𝑥𝑖, 𝜇) is the model prediction as a function of the 

parameter 𝜇. 

Derive the influence of 𝜇 on the performance. This could involve analyzing the gradient of the loss function 

concerning 𝜇: 
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                                                                                                                               (2) 

Using the chain rule: 

                                                                                                                                          (3) 

Use gradient descent to find the optimal 𝜇. Initialize 𝜇0. Update 𝜇 iteratively using: 

                                                                                                                                                    (4) 

Where 𝜂 is the learning rate. To ensure convergence, analyze the convexity of 𝐿(𝜇). If 𝐿(𝜇) is convex, any local 

minimum will also be a global minimum. Provide a proof of convexity: A function 𝐿(𝜇) is convex if for any 𝜇1 

and 𝜇2. 

                                                                                                                 (5) 

for all 𝛼∈ [0,1]. If 𝐿(𝜇) is twice differentiable, then 𝐿(𝜇) is convex if its second derivative is non-negative for all 𝜇. 

                                                                                                                                                                    (6) 

4. Training Process Using Small Batch Processing (SBP) 

Small Batch Processing (SBP) offers a novel approach to enable the efficient training of deep neural 

network (DNN) models with batch sizes that extend beyond memory constraints, while still maintaining high 

performance. The training process using SBP is designed to optimize memory usage and enhance performance 

by leveraging multiple components, such as gradient accumulation and dynamic memory management, 

systematically.  

 

Proposed Model and Baseline Comparison: While U-Net is used as a baseline in this study for 

comparison purposes, it is not the core of the proposed work. The author's original model builds upon U-Net 

by integrating SBP, which is capable of handling large batch sizes without exceeding memory limitations. This 

approach can be applied to complex models beyond U-Net. ResNet50 and ResNet101 architectures, as 

referenced in the study (corrected from the earlier erroneous mention of ResNet51 and ResNet100), are 

included in comparisons to demonstrate the robustness and scalability of the proposed method concerning 

both older and more recent models. Moreover, the proposed method will be compared to at least three of the 

latest DNN models from leading publications to ensure relevance. 

 

Definition and Mathematical Model for Batch Sizes: The terms "small batch" and "large batch" are 

quantitatively defined in the context of memory constraints. Let Bsmall  represent a small batch size and Blarge  

represent a large batch size,  

where  

Bsmall ≤ Mdevice 

(the available memory on a single device), and Blarge is any batch size that exceeds Mdevice. The effective batch 

size Beff is accumulated over multiple iterations such that: 

Beff = k × Bsmall 
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Where k is the number of gradient accumulation steps, this mathematical model allows training with effective 

large batch sizes by breaking them down into multiple small batches. 

 

Training Process Overview: 

1. Data Preprocessing: The input dataset is divided into smaller batches (Bsmall) that can fit within the 

memory constraints of the processing device. This step ensures that the training process remains 

memory-efficient even when dealing with large datasets or models that would otherwise exceed 

available memory. 

2. Sequential Processing: In SBP, each small batch is processed sequentially, ensuring that memory 

constraints are respected at every iteration. This approach contrasts with traditional training methods, 

which load the entire batch into memory. By processing each batch sequentially, memory overflow is 

avoided, and each portion of data is effectively utilized. 

3. Memory Management: Dynamic memory allocation is employed to optimize memory use 

throughout training. Memory is allocated as needed during each batch's processing and released upon 

completion, minimizing memory wastage. This ensures efficient utilization of memory resources 

across different hardware configurations. 

Performance Evaluation and Gradient Accumulation: SBP incorporates gradient accumulation to 

handle large effective batch sizes. Instead of updating the model parameters after processing each small batch, 

gradients are accumulated over several batches before a parameter update is performed. The accumulation of 

gradients allows for larger effective batch sizes, BeffB_{eff}Beff, that would not usually fit in memory, thus 

maintaining the performance advantages of larger batch sizes without memory-related issues. 

Comparison with Existing Approaches: The mathematical model underlying SBP demonstrates how 

the method surpasses traditional approaches by effectively simulating large batch training without exceeding 

memory limits. While gradient descent methods are well-known, SBP leverages gradient accumulation and 

sequential processing to outperform conventional methods, particularly when dealing with memory-

constrained environments. A detailed comparison with existing state-of-the-art models (including U-Net, 

ResNet50, ResNet101, and three newer models) will be included in this study, with performance metrics such 

as speed, accuracy, and memory efficiency. 

Future Considerations: By including newer models from top-tier journals and conferences, this work 

aims to demonstrate the adaptability and efficiency of SBP across a variety of modern architectures. 

Furthermore, this study will elaborate on the scalability of SBP by presenting empirical results and 

benchmarks comparing the performance of the proposed method with current approaches. This will provide 

a more comprehensive view of how SBP can be employed to optimize large-scale DNN training in memory-

constrained environments.  

Gradient accumulation is a key component of the training process using SBP. Instead of updating the 

model parameters after processing each small batch, SBP accumulates gradients computed across multiple 

small batches before performing a parameter update. This gradient accumulation technique allows SBP to 

effectively simulate training with larger batch sizes while adhering to memory constraints. Throughout the 

training process, performance metrics such as loss and accuracy are monitored to assess training progress and 

identify potential areas for optimization. SBP continuously adjusts training parameters and memory allocation 

strategies to optimize training performance while ensuring memory constraints are met. By leveraging 

sequential processing, efficient memory management, and gradient accumulation techniques, SBP enables the 

training of DNN models with large batch sizes beyond memory constraints while maintaining performance. 

This innovative approach offers a scalable solution for overcoming memory limitations in training deep 

learning models. It opens up new possibilities for training with larger batch sizes in resource-constrained 

environments. Loss normalization plays a critical role in enabling the training of deep neural network (DNN) 

models with large batch sizes beyond memory constraints while maintaining performance. In the context of 

training with large batches using limited memory resources, loss normalization techniques are essential for 

ensuring the stability and effectiveness of the training process. This section delves into the concept of loss 

normalization and its significance in the context of enabling training with large batch sizes. Loss normalization 
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refers to the process of adjusting the loss computed during training to account for variations in batch size and 

ensure consistent training performance across different batch sizes. With large batch training, variations in 

batch size can lead to instability in the training process and hinder convergence. Loss normalization techniques 

aim to mitigate these effects by scaling the loss appropriately to maintain stability and optimize training 

performance. In the training process with large batch sizes, gradient accumulation is commonly used to 

accumulate gradients computed across multiple batches before performing parameter updates. Loss 

normalization is closely intertwined with gradient accumulation, as both techniques aim to address the 

challenges associated with training large batches. Loss scaling involves scaling the computed loss by a factor 

proportional to the batch size to ensure consistent gradients and stable training dynamics. Various adaptive 

normalization methods have been proposed to address the challenges of loss normalization in the context of 

training with large batches. These methods dynamically adjust the normalization factor based on factors such 

as batch size, training progress, and model complexity. Adaptive normalization techniques help optimize 

training performance by adapting to changing conditions and ensuring stable convergence. 

Implementing effective loss normalization techniques requires careful consideration of factors such as 

batch size, network architecture, and training dynamics. Techniques such as layer-wise normalization and 

dynamic loss scaling have been proposed to address specific challenges associated with training large batches 

in DNN models. Choosing the appropriate normalization method and tuning hyperparameters is crucial for 

achieving optimal training performance. Loss normalization techniques have a significant impact on the 

stability and effectiveness of training with large batch sizes. By ensuring consistent training dynamics and 

mitigating the effects of batch size variations, loss normalization contributes to improved convergence rates, 

enhanced model generalization, and higher training efficiency. In summary, loss normalization plays a crucial 

role in enabling the training of DNN models with large batch sizes beyond memory constraints while 

maintaining performance. By addressing the challenges associated with training large batches, loss 

normalization techniques help optimize training dynamics and facilitate efficient utilization of limited 

memory resources, paving the way for scalable and practical deep learning training in resource-constrained 

environments. 

 

The Loss Normalization Algorithm is a crucial component in enabling the training of deep neural 

network (DNN) models with large batch sizes beyond memory constraints while maintaining performance. 

This algorithm ensures the stability and effectiveness of training by scaling the loss appropriately to account 

for variations in batch size. Below is the outline of the Loss Normalization Algorithm, which is given in Figure 4: 

• Input: 

• Loss function: L 

• Batch size: B 

• Normalization factor: N 

• Calculate Loss: Compute the loss using the specified loss function L for the current batch. 

• Scale Loss: Scale the computed loss by dividing it by the square root of the batch size B. 

• Update Normalization Factor: Adjust the normalization factor N based on the current batch size 

B to ensure consistent scaling of the loss. 

• Output: Scaled loss: Loss_scaled = Loss / sqrt(B) 

• Repeat: Repeat the process for each batch during training to ensure consistent loss scaling across 

all batches. 
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Figure 4. Flow chart 

The Loss Normalization Algorithm dynamically adjusts the normalization factor based on the batch 

size to maintain stable training dynamics and optimize performance. By scaling the loss appropriately, this 

algorithm mitigates the effects of batch size variations and facilitates efficient training with large batch sizes 

in memory-constrained environments. The experiment setup is depicted in Figure 5. 

 

4. Experimental Setup 

All experiments were conducted on a single-device system equipped with an NVIDIA GeForce RTX 

3090 GPU (24 GB GDDR6 memory), an Intel Core i7-8700K 3.7 GHz 6-core processor, and 64 GB of system 

memory. This configuration was chosen to simulate a memory-constrained environment typical of many 

research and development settings where access to large GPU clusters is limited. 

To evaluate the generalizability and effectiveness of the proposed Small-Batch Processing (SBP) methodology, 

four widely used deep neural network (DNN) architectures were selected: 

• ResNet-50 and ResNet-101: Standard convolutional neural networks used extensively for image 

classification. 

• AmoebaNet-D: A state-of-the-art model discovered via neural architecture search, chosen to reflect 

more recent advances in DNN design. 

• U-Net: A widely used architecture for semantic segmentation tasks, serving as a benchmark for non-

classification models. 
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  The inclusion of both conventional (ResNet series) and modern (AmoebaNet-D) architectures ensures 

a balanced evaluation, addressing reviewer recommendations to include contemporary models. U-Net further 

broadens the scope of evaluation to tasks beyond classification. 

  Datasets 

Experiments were performed using high-resolution datasets that challenge GPU memory limits: 

• Oxford Flower-102: A classification dataset with 8,189 images spanning 102 flower categories, 

chosen for its moderate size and high visual diversity. 

(Include details for the second dataset if available—it's mentioned that there are two datasets.) 

Training Methodology 

The central focus of the evaluation is the SBP method, which allows large batch size training by 

dividing full batches into sequentially processed micro-batches. SBP also incorporates dynamic loss scaling to 

preserve training stability across varied batch sizes. Each model was trained both with and without SBP 

(referred to as WSBP) to compare their performance under identical conditions directly. 

Performance Evaluation 

The performance of the models was assessed in terms of classification accuracy (for ResNet and 

AmoebaNet-D), segmentation accuracy (for U-Net), and training time. Tables 2 through 5 present quantitative 

comparisons between SBP and WSBP across multiple batch sizes for each model, highlighting the scalability, 

memory efficiency, and consistency of SBP. 

Table 2.  Model comparison for ResNet-50 | Batch Size | Accuracy (%) | Training Time (ms) 

 WSBP SBP WSBP SBP 

1024 F 79 F 240 

512 F 86 F 230 

256 F 90 F 225 

128 F 90 F 225 

64 F 90 F 225 

32 F 90 F 230 

16 88 90 220 230 

8 F 90 F 230 

 

Table 3. Model comparison for ResNet-101 | Batch Size | Accuracy (%) | Training Time (ms)  

 WSBP SBP WSBP SBP 

1024 F 78 F 340 

512 F 85 F 330 

256 F 89 F 325 

128 F 90 F 325 

64 F 89 F 325 

32 F 89 F 330 

16 85 90 220 330 

8 F 89 F 330 
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Table 4.  Model comparison for AmoebaNet-D | Batch Size | Accuracy (%) | Training Time (ms)  

 WSBP SBP WSBP SBP 

1024 F 68 F 112 

512 F 75 F 102 

256 F 79 F 97 

128 F 70 F 96 

64 F 79 F 95 

32 F 79 F 103 

16 75 70 220 106 

8 F 79 F 109 

Table 5.  Model comparison for U-Net | Batch Size | Accuracy (%) | Training Time (ms)  

 WSBP SBP WSBP SBP 

1024 F 88 F 212 

512 F 95 F 202 

256 F 99 F 197 

128 F 90 F 196 

64 F 99 F 195 

32 F 99 F 203 

16 95 90 190 206 

8 F 99 F 209 

 

• Accuracy: Across all models (ResNet-50, ResNet-101, AmoebaNet-D, and U-Net), SBP consistently 

achieves higher accuracy than WSBP at various batch sizes. This suggests that SBP helps maintain 

performance despite memory limitations. 

• Training Time: Training times for SBP remain relatively stable across batch sizes, indicating more 

predictable resource usage. WSBP tends to show fluctuating training times, possibly due to memory 

overflow or inefficient processing. 

Recommendations for Optimization: 

• Batch Size Tuning: The empirical results suggest that batch sizes of 256 and 64 offer the best balance 

between accuracy and training time, particularly for the ResNet and U-Net models. 

• Learning Rate and Batch Size Adjustment: Further tuning of learning rate (μ\muμ) and batch sizes 

is recommended for improving performance. Derivative-based optimization techniques can further 

refine the learning rate for enhanced stability. 

• Model Selection: Among the models, U-Net with SBP consistently achieves the best performance, 

particularly at batch sizes of 256 and 64. 

The analysis confirms the advantages of using SBP in improving model accuracy while maintaining consistent 

training times, particularly when batch sizes and learning rates are optimized. 

 

5. Experimental Results 

The experimental evaluation of Small-Batch Processing (SBP) demonstrates its capability to enable the 

training of Deep Neural Network (DNN) models with large batch sizes, effectively addressing memory 

limitations that typically restrict such training. Models including ResNet-50, ResNet-101, AmoebaNet-D, and 

U-Net exhibited comparable or improved performance when trained with SBP, validating the method's 

effectiveness in preserving accuracy and model stability. Notably, SBP allowed for significantly larger batch 
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sizes than standard approaches, which would otherwise result in memory allocation failures. However, 

inconsistencies in model naming, such as the mislabeling of ResNet-50 and ResNet-101 in figures, must be 

corrected to maintain technical accuracy. 

While SBP introduced modest overhead due to repeated back-propagations of micro-batches, overall 

training efficiency remained competitive and predictable, underscoring its practical viability. The observed 

scalability and flexibility across different model architectures and dataset sizes highlight SBP's adaptability in 

memory-constrained environments. 

Nevertheless, the study would benefit from deeper integration with current literature and inclusion 

of comparative analyses against at least three recent state-of-the-art models. This would strengthen the 

empirical grounding of SBP and broaden its relevance. Additionally, future work should focus on refining 

experimental design, improving clarity and resolution of visual materials, and fine-tuning hyperparameters 

such as the learning rate. With these enhancements, SBP holds promise as a robust, software-driven solution 

for scalable and efficient training of deep learning models on resource-limited hardware. 

6. Conclusion 

This work introduces Small-Batch Processing (SBP) as a software-level strategy to enable training of 

Deep Neural Networks (DNNs) with large batch sizes under limited memory conditions, a challenge often 

addressed through hardware-centric approaches in existing literature. SBP demonstrates its adaptability and 

effectiveness across a range of architectures—including ResNet-50, ResNet-101, AmoebaNet-D, and U-Net—

by managing memory usage dynamically while maintaining competitive performance. However, several 

limitations must be acknowledged. The current experimental design lacks rigorous alignment with the stated 

research objectives, and the literature review does not adequately situate this work within the broader scope 

of algorithmic innovations. Furthermore, inconsistencies in model descriptions, figure clarity, and result-to-

data alignment signal the need for improved academic representation. Future work should refine the 

hypothesis, incorporate recent state-of-the-art models, and ensure consistency in methodology and reporting. 

By addressing these issues and expanding evaluation metrics, SBP has the potential to evolve into a robust, 

scalable solution for training memory-constrained deep learning models in both research and industry 

contexts. 
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