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Palm oil is the most widely demanded edible oil globally [1]. Indonesia

Publisher’s Note: ranks as the world’s leading exporter of palm oil. The land area dedicated to oil
This article is published and ~ palm plantations and the production of crude palm oil (CPO) experienced
distributed under the terms  significant growth in 2018 compared to previous years. By 2022, the total area of
of the Thaksin University. oil palm plantations was estimated to have reached 15.34 million hectares, as
illustrated in Figure 1 [2]. Each hectare of oil palm yields 10-35 tons of fresh fruit

bunches (FFB) annually, indicating that in 2022, Indonesia produced

approximately 153.4-536.9 million tons of FFB [3]. The production of palm oil

generates a byproduct known as palm oil mill effluent (POME) during its

extraction process. For every ton of FFB processed in palm oil mills, the resulting

waste comprises 23% empty fruit bunch fibers, 12% mesocarp fibers, 5% shells,

and 60% POME [4]. These proportions indicate that POME constitutes the most

significant fraction of waste in the palm oil industry, amounting to
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approximately 92.04-322.14 million tons in Indonesia in 2022. The wet extraction process of palm oil requires
a substantial volume of water, with about 1.5 m? of water used per ton of FFB processed [5]. Of the estimated
5.0-7.5 tons of water needed to produce one ton of crude palm oil, more than 2.5-3.75 tons are converted into
POME [6], [7]. According to A. A. Z. Lorestani [8], the processes contributing the most to POME generation
are FFB sterilization (36%), crude palm oil extraction and clarification (60%), and the separation of kernels and
shells in hydrocyclones (4%).
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Figure 1. Palm oil plantation area in Indonesia [2]

If left untreated, industrial waste from POME poses a significant environmental risk due to its high
concentration of organic matter and other pollutants, which can harm both fauna and flora, as well as
compromise water quality. Exposure to POME has been linked to reduced plankton diversity and
physiological and reproductive issues in fish [9]. Additionally, it can severely impact aquatic ecosystems by
creating highly acidic conditions or triggering eutrophication, characterized by excessive algal growth on
water surfaces. Traditional POME treatment methods typically employ anaerobic-aerobic lagoon systems,
comprising at least two sequentially connected ponds, to reduce the organic content before discharge into
surface waters. However, these systems face limitations, including solid accumulation, methane emissions,
sludge and foam formation (which decrease treatment efficiency), and the requirement for large land areas.
When POME is stored in open-air holding ponds for remediation, it releases methane, carbon dioxide, and
hydrogen sulfide, contributing to global climate change [3].

The anaerobic digestion (AD) process converts organic waste into biogas, a promising renewable and
sustainable energy source, particularly in regions with abundant feedstock. AD can be utilized for various
organic materials, including agricultural waste, the organic fraction of municipal solid waste, sewage sludge,
and industrial waste. POME has also been investigated as a potential substrate for AD systems due to its high
organic content. Figure 2 shows the AD process scheme. The AD process involves several sequential microbial
stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. During methanogenesis, the
collaborative interaction among diverse microorganisms is essential for efficient digestion, relying on effective
interspecies electron transfer [10]. The process begins with fermentation, establishing a complex network of
interspecies electron transfer to sustain cooperative microbial activity. Within this network, electron exchange
between syntrophic bacteria (secondary fermenting bacteria) and methanogens is a critical step, addressing
the intermediate bottleneck and ensuring the successful completion of final methanogenesis.

Accelerators play a vital role in enhancing the performance of AD systems through various
mechanisms. These accelerators can be categorized into several types, including biological accelerators (such
as enzymes, microbial consortia, and fungi), chemical reagents, macronutrients, minerals, trace elements,
transition metal oxides (TMOs), and carbon-based materials [11], [12]. Under natural conditions, Direct
Interspecies Electron Transport (DIET) occurs only through direct physical contact between bacteria and
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methanogens. However, the addition of TMOs to AD systems eliminates the requirement for direct contact
due to their conductive properties [13]. The high conductivity of TMOs facilitates efficient electron transfer,
providing the fastest pathway for electron exchange between microorganisms [12], [14]. MnO, and Fe,;Oj; are
abundantly available in Indonesia. This study aims to compare Fe;O; and MnO, to determine the most
effective TMO for enhancing the AD process in POME treatment.
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Figure 2. Anaerobic Digestion Scheme

2. Materials and Methods

2.1 Inoculum

The inoculum used in this research was digested cow manure (DCM) obtained from a biodigester at
a cattle farm in Hargobinangun, Kaliurang, Yogyakarta, Indonesia. The inoculum was filtered to remove
impurities and prevent clogging. The COD concentration of the inoculum was analyzed (with a measured
value of 62,000 mg COD/L), and the inoculum was used on the same day the reactor was started.

2.2 Substrate

POME was used as the substrate for anaerobic digestion in this study. It was collected from a palm oil
mill in Riau, Indonesia. To remove impurities, the POME was filtered using a 2 mm pore filter. The COD
concentration of the POME was analyzed to determine the precise mixing ratio between the inoculum and the
substrate. Table 1 presents the physical and chemical properties of the POME. The pH of the POME in this
research was 4.5, indicating an acidic nature, which is typical for raw POME and aligns with the values
reported by Saelor [15] (4.68 +0.27) and Suksong [16] (5.6). The COD concentration observed in this study was
significantly higher (81,000 mg/L) compared to the values reported by Saelor [15] and Suksong [16]. The
carbohydrate content in this research was 0.91%, equivalent to 73.71 g/L, which was also significantly higher
than the values reported by Saelor [15] and Suksong [16]. The variation of both COD and carbohydrate may
be attributed to differences in the palm oil milling process or feedstock composition [17].
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Table 1. Physical and Chemical Properties of POME

Properties This Research [15] [16]
pH 4.5 4.68 +0.27 5.6
COD (mg/L) 81000 42550 + 6140 44000
C/N ratio n/a 27.59 22.85
Carbohydrate 0.91% 9.00 £ 0.01 g/L 14.11 g/L
2.3 Reactor

Batch reactors with a working volume of 4 liters were used in this study. The reactors were operated
at room temperature (27 °C). Each reactor was connected to a gasometer, based on the principle of water
displacement. The gasometer was filled with a 75% salt-saturated solution at pH 2 to prevent gas absorption
into the water [18]. Figure 3 illustrates the reactor setup used in this study.

v/ 2a
¢
2b
2
2¢
2d
1 : reactor (4L) 2 : gasometer
la  :liquid input and output port 2a  :gas output port
1b  :gas sampling port 2b  :column
lc  :gas output to gasometer 2c  : 75% saturated salt acidified

2d : water basin

Figure 3. Reactor Scheme in This Research

2.4 Experimental Part
2.4.1 Anaerobic Reactor Start Up

All reactors underwent a leakage test before use. The inoculum and substrate were mixed at an
inoculum-to-substrate ratio of 4:1 (%COD). After mixing, the mixture was divided into 4-liter batches. The
first two batches were loaded into two identical reactors without the addition of any TMO, serving as the
control (RC). The second two batches were mixed with Fe,Os (60 mg/L) until homogeneous and then loaded
into two identical reactors (RFe). Similarly, the last two batches were mixed with MnO, (60 mg/L) and loaded
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into two identical reactors (RMn). Each reactor was flushed with nitrogen to eliminate oxygen from the sludge
and headspace. Following nitrogen flushing, each reactor was connected to a gasometer.

2.4.2 Anaerobic Reactor Operation

The batch reactors were operated under mesophilic conditions at 27 °C. Gas production volume was
measured daily using the gasometer tube scale and basin scale [18]. The pH was maintained within the range
of 7.0-7.5. If the pH dropped to 7.0 or below, 1 M NaOH was added to the reactor to adjust the pH.

2.4.3 Gas Analysis

Gas samples were collected weekly to analyze their CH, and CO; content. The analysis was performed
using a Shimadzu GC-8A gas chromatograph equipped with a thermal conductivity detector (GC-TCD),
manufactured in Japan.

2.4.4 Liquid Analysis

Liquid samples were collected twice a week. COD and sCOD analyses were conducted using the
titrimetric method [19], while VFA analysis was performed using the distillation method [20].

3.Results and Discussion

3.1. Proximate Analysis

Proximate analysis was performed to characterize the substrate and inoculum. Table 2 presents the
proximate analysis results for POME and DCM.

Table 2. Proximate Analysis Result of POME and DCM

Compound POME DCM
Protein 0.66% + 0.01% 0.58% + 0.03%
Lipid 0.85% + 0.01% 0.08% + 0.00%
Carbohydrate 0.91% + 0.06% 0.84% + 0.01%
Water 97.09% = 0.06% 97.97% % 0.01%
Ash 0.45% + 0.42% 0.54% + 0.03%
3.2 Biogas Analysis

Three reactors were used in this study: RC (control reactor), RFe (AD reactor with Fe,O; addition),
and RMn (AD reactor with MnO, addition). Figure 4 illustrates the biogas production of all three reactors.
Two distinct peaks were observed, occurring around day 1 and day 9, which are associated with the
degradation of carbohydrates and subsequently of complex macromolecules such as crude proteins,
lignocelluloses, and aromatics. As reported by Yun [12], these complex compounds generally decompose more
slowly compared to carbohydrates. Additionally, POME contains 32,505-36,894 ppm of long-chain fatty acids
(LCFA), and the hydrolysis of lipids has been identified as the rate-limiting step in the anaerobic digestion of
POME, which may explain why the second peak was more pronounced than the first [21]. Biogas production
decreased significantly after Day 21. In line with this, cumulative methane production began to level off as
shown in Figure 5. The lag phase lasted less than one day, and approximately 90% of the methane was
produced by Day 12, indicating that the substrate was readily biodegradable [22]. RFe achieved the highest
methane production, reaching 793.4 mL CH,, which was 21% higher than that of the control reactor (RC). In
contrast, RMn produced 7,6% less methane than the RC. Methane production volume was measured under
controlled conditions at 25 °C and 1 atm.
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Figure 5. Cumulative Methane Production

3.3 Liquid Analysis

Figure 6 shows the volatile fatty acid (VFA) concentrations of all reactors, which remained stable and
predominantly below 1,000 mg/L. VFAs are intermediate compounds in the AD process generated from
acidogenesis and acetogenesis. However, VFAs accumulation can lower pH, becoming toxic to methanogens
[23]. The optimal concentration of organic acids is less than 1,000 mg/L, with propionic acid levels below 200
mg/L [24]. All reactors experienced a sharp decline in VFA concentrations on Day 10, corresponding to the
peak methane production on Day 9. This indicates high methanogen activity, as large amounts of VFAs were
consumed and converted into methane.

Among the reactors, RMn had the lowest VFA concentration, yet its methane production was the
lowest. Conversely, RFe exhibited the highest VFA concentration on Day 10 and also achieved the highest
methane production, suggesting efficient acidogenic and acetogenic activity. After the peak methane
production, VFA levels returned to their regular concentrations. On Day 21, when methane production was
significantly reduced, RFe had the lowest VFA concentration.
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At the beginning of the process, the VFA concentration in all reactors was 1,079 mg/L. By Day 21, VFA
levels remained consistent across all reactors, indicating stable systems. The pH profile, shown in Figure 7,
reflects this stability. Due to steady VFA levels, the pH remained stable in all reactors throughout the process.

Figure 8 presents the profiles of COD and sCOD. Both COD and sCOD concentrations declined over time,
with no accumulation of sCOD, indicating that the rates of acidogenesis and acetogenesis were higher than
hydrolysis. On Day 10, when methane production peaked and VFA concentrations dropped, sCOD levels
remained stable. This stability suggests that the reduction in VFA was due to enhanced methanogenic activity,
with no inhibition of acidogenesis or acetogenesis. Similar trends of declining VFA during peak methane
production have been observed in other studies [25], [26]. The type of substrate influences the rate-limiting
step in anaerobic digestion. The observed trends in VFA and sCOD concentrations indicate that acidogenesis,
acetogenesis, and methanogenesis proceeded rapidly. However, due to the high content of long-chain fatty
acids (LCFA) in POME, lipid hydrolysis was identified as the rate-limiting step, as supported by these patterns
[11], [21]. Figure 9 illustrates the percentage of COD removal for all reactors. The reactor without TMO (control
reactor) exhibited the highest COD removal efficiency at 55.4%, compared to 50.6% for RFe and 43.7% for RMn.
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Figure 9. COD Removal Profile

3.4 TMO Effect Analysis

All reactors exhibited similar trends, but the effectiveness of the TMOs can be evaluated based on
several parameters, as summarized in Table 3. While RC showed the highest COD removal, its methane
production was relatively unsatisfactory. The methane yield of RFe, at 0.0391 mL CH,/mg COD, was 32%
higher than that of RC. Although RMn had lower methane production and %COD removal, its methane yield
was 17.2% higher than RC. Based on these parameters, Fe,O; was identified as the most effective TMO for
anaerobic digestion. A study conducted by Tian (2019) [27] reported a 21.7% increase in methane production
volume using MnO; as a TMO in AD. In another study, Kokdemir Unsar and Perendeci (2018) [28], observed
a 28.9% increase in methane production volume in AD with Fe,Os3 addition. These findings align with the
results of this study, confirming that Fe,Os is more effective than MnO..

Table 3. Anaerobic Digestion Performance of All Reactors

Methane Production Methane Yield
R 9 D 1
No eactor (mL) %COD remova (mL/g COD)
1 RC 4153.5 55.4% 0.0297
RFe 5003.2 50.6% 0.0391

3 RMn 3839.2 43.7% 0.0348
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As shown in Table 3, RC exhibited higher methane production than RMn, although the methane yield
was lower. A similar phenomenon was reported by Chaiprapat [29], where, at a cycle time of 24 hours, the
biogas production volume, methane concentration, and methane yield were 3.87 L gas/L wastewater, 44.9%,
and 0.02 L CH,/g TCOD removed, respectively. In contrast, at a 12-hour cycle time, the respective values were
2.55 L gas/L wastewater, 35.8%, and 0.12 L. CH,/g TCOD removed. Chaiprapat found that although methane
production was higher at a 24-hour cycle time, the percentage of total chemical oxygen demand (TCOD)
removed was 14.1%. In contrast, a higher percentage of TCOD removal, 16.4%, was achieved at the shorter
cycle time of 12 hours, despite lower methane production. A similar trend is observed in Table 3, where RC
showed the highest %COD removal, yet lower methane production than RFe. This could be attributed to the
formation of other gases such as hydrogen. A study by Abdurahman [30], [31] also reported lower methane
yield associated with higher %COD removal, supporting this observation.

4. Conclusions

The addition of TMOs to the AD process can enhance its performance. Fe,O; has the potential to
improve both methane production volume and methane yield in the AD process when POME is used as the
feedstock. Fe,Os could serve as an effective accelerant for the AD process, supporting the palm oil industry.
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