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Abstract: Chronic Kidney Disease (CKD) is a long-term medical condition in
which the kidneys gradually lose their ability to function properly. Early
detection of CKD is crucial for preventing severe complications and improving
patient outcomes. Traditionally, CKD diagnosis has relied on manual analysis
of clinical parameters and laboratory tests, which often lack scalability and
precision. Artificial Intelligence (AI), through machine learning algorithms, has
transformed healthcare by enabling automated and accurate disease detection.
Datasets play a pivotal role in developing Al-based diagnostic systems, as the
quality and balance of data significantly influence model performance. The
majority of existing research on CKD detection has focused on balanced datasets,
where data samples are evenly distributed across classes, to recommend the
most effective classifiers for detection. However, in real-world scenarios,
datasets are often imbalanced, with minority classes underrepresented, leading
to biased models and poor detection of critical cases. Therefore, adopting
suitable techniques to handle these imbalances is necessary. In this context, this
paper addresses the issue by evaluating the performance of various classifiers
on both slightly imbalanced and severely imbalanced CKD datasets. Through
comprehensive experimentation, the research identifies that Gradient Boosting
Machine (GBM) demonstrates robust performance across both slightly and
severely imbalanced datasets by achieving 99.25% + 0.68 and 92.26% =+ 2.23
testing accuracy, 100% and 90.79% + 3.9 AUROC, 0.01 + 0.01 and 0.39 +0.15 LR-,
64.98% and 84.54% + 3.41 H — measure. This work emphasizes the need for adaptable
classifiers that reflect real-world data, improving the reliability of Al-based CKD
diagnosis.

Keywords: Artificial intelligence in healthcare; Chronic Kidney Disease (CKD);
Imbalanced Datasets; Machine Learning for Disease Detection;
Gradient Boosting Machine (GBM)

1. Introduction

Chronic Kidney Disease (CKD) is a progressive medical condition
characterized by the gradual loss of kidney function over time, preventing the
kidneys from effectively filtering waste, excess fluids, and toxins from the blood.
This condition affects millions of people globally and poses a significant burden
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on healthcare systems. CKD is often referred to as a "silent disease" because symptoms typically do not appear
until the disease has progressed to advanced stages, making early detection critical to prevent severe
complications such as cardiovascular diseases or kidney failure. The causes of CKD are diverse, with diabetes
and hypertension being the most common reasons. Diabetes, characterized by elevated blood sugar levels, can
damage the tiny blood vessels in the kidneys, impairing their ability to filter blood. Similarly, high blood
pressure puts excessive stress on these delicate vessels, leading to functional decline. Other causes include
glomerulonephritis, an inflammatory condition affecting the kidney's filtering units; polycystic kidney
disease, a genetic disorder characterized by cyst formation; recurrent kidney infections; and the long-term use
of nephrotoxic medications, such as certain painkillers. These factors, alone or in combination, contribute to
the progression of CKD. While CKD progresses silently in its initial stages, a range of symptoms may appear
as kidney function deteriorates. These include persistent fatigue, swelling in the extremities or face due to
fluid retention, nausea, vomiting, changes in appetite, and cognitive difficulties such as trouble concentrating.
Changes in urination patterns, including increased frequency, altered color, or the presence of foamy urine,
may also occur. Advanced stages may lead to severe complications, including electrolyte imbalances, anemia,
and shortness of breath, significantly impacting the patient’s quality of life. In addition to medical causes,
lifestyle factors such as a high-sodium diet, lack of physical activity, obesity, and smoking significantly increase the
risk of CKD. Environmental factors, including exposure to heavy metals, contaminated water, and air pollution,
have also been linked to kidney dysfunction, particularly in regions with poor environmental regulations.

CKD is categorized into 5 stages as shown in Figure 1, based on the glomerular filtration rate (GFR),
a measure of how well the kidneys filter blood. In Stage 1, kidney function is normal but with mild damage,
and the GFR is 90 mL/min or higher. Stage 2 indicates a mild decline in kidney function, with GFR between
60 and 89 mL/min. Stage 3 reflects a moderate decline, with GFR ranging from 30 to 59 mL/min. By Stage 4,
the disease is severe, with GFR between 15 and 29 mL/min, and Stage 5 signifies end-stage renal disease
(ESRD), where the GFR drops below 15 mL/min, necessitating dialysis or transplantation [1]. Several
diagnostic methods are employed to detect and monitor CKD [2]. Blood tests, including measurements of
serum creatinine and blood urea nitrogen, are used to assess kidney function. Urine tests are used to detect
abnormalities such as proteinuria or hematuria, which can indicate kidney damage. Imaging techniques, such
as ultrasound and CT scans, help identify structural abnormalities or obstructions, while kidney biopsies
provide a detailed analysis of kidney tissue to determine the extent of damage [3]. Estimates of GFR are critical
for staging CKD and monitoring its progression. However, these diagnostic methods have several limitations.
Late diagnosis is common due to the asymptomatic nature of early-stage CKD. Some methods, like biopsies,
are invasive and carry risks. Cost and accessibility remain barriers, particularly in resource-constrained
settings, while manual interpretation of test results introduces subjectivity and potential errors.

Artificial Intelligence (AI) offers promising solutions to these challenges [4]. By leveraging advanced
machine learning algorithms, Al systems can analyze large and complex datasets with precision, enabling the
early detection of subtle patterns in clinical data. Additionally, Explainable AI (XAI) is growing as a crucial
component in healthcare applications, addressing the "black-box" nature of traditional AI models [5]. The
Internet of Things (IoT) can play a transformative role by enabling real-time data collection from patients [6].
IoT devices, such as wearable sensors, smart health monitors, and connected medical equipment, can
continuously track vital parameters like blood pressure, blood sugar levels, heart rate, and kidney-related
biomarkers [7-8]. These devices can transmit the collected data to centralized systems for analysis, allowing
for early identification of abnormalities and potential disease progression. The IoT can also facilitate remote
monitoring, enabling healthcare providers to track patients' health without requiring frequent hospital visits,
which is especially beneficial for individuals in remote or underserved areas. These systems enhance
diagnostic accuracy, minimize human error, and facilitate scalable solutions that can handle large patient
populations. By leveraging the data collected, Al supports personalized treatment by identifying patient-
specific risk factors and predicting disease progression. Moreover, Al-powered tools can address real-world
challenges, such as imbalanced datasets, which often result in biased models and poor detection of critical
cases [9-10]. In this view, this paper evaluates various classifiers for both slightly imbalanced [11] and severely
imbalanced datasets [12].
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Figure 1. Various stages of CKD.

The rest of this paper is organized as follows: Section 2 provides an overview of related works, and
Section 3 describes the proposed methodology in detail. Section 4 presents the results and discussion,
analyzing the performance of various classifiers. Finally, Section 5 concludes the paper by summarizing the
key findings and suggesting potential avenues for future research in the detection of CKD.

2. Related Work

This section provides a comprehensive review of the existing literature on the detection of CKD using
various intelligence-based techniques. It highlights the progress made, key methods and approaches, and
significant findings in this domain. A summary of key works in the literature is presented in Table 1. The
prediction and early detection of CKD have gained significant attention in the research community due to
CKD's high prevalence and associated complications. Various machine-learning models have been explored
to enhance prediction accuracy and enable timely interventions [13]. Several comparative analyses have
evaluated the performance of machine learning classifiers, such as Random Forest, SVM, XGBoost, and k-
Nearest Neighbors [14]. Furthermore, deep learning frameworks, such as convolutional neural networks
(CNN:s), long short-term memory (LSTM) networks, and ensemble methods, have been proposed for CKD
prediction [15-17]. The integration of advanced feature engineering techniques, including recursive feature
elimination and optimization strategies like Bayesian tuning, has further enhanced the predictive capabilities
of these models. Additionally, several studies have investigated the impact of data augmentation and
resampling techniques. In addition to improving prediction accuracy, researchers have also focused on
addressing challenges such as data privacy [18]. Privacy-preserving models using encrypted data through the
Paillier homomorphic cryptosystem ensure secure predictive analysis without compromising patient
confidentiality. Meta-heuristic feature selection techniques, including genetic and bat algorithms, have been
used to optimize model performance and reduce computational complexity. Despite significant advances,
most studies focus on balanced datasets, where each class is equally represented. However, real-world
datasets often exhibit class imbalance, affecting the detection of minority cases. This imbalance affects the
classifier’s performance and restricts the identification of critical conditions. To address this limitation, this
research evaluates classifiers on CKD datasets with both slight and severe class imbalance. The deployment
of machine learning models into clinical practice has seen significant progress through frameworks like
DEPLOYR [19], which enables seamless integration of real-time predictive models into electronic medical
records, aligning model outputs with clinical workflows. Beyond technical integration, real-world
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performance monitoring is essential for finding valuable insights about model behavior post-deployment and
identifying the need for ongoing surveillance [20]. The SHIELD-RT randomized study further addresses the
practical challenges of deploying ML tools in a clinical setting, highlighting barriers such as clinician adoption,
workflow alignment, and infrastructure readiness [21]. Multimodal AI frameworks have been proposed to
support more generalizable and robust clinical applications by integrating diverse data sources, such as
imaging, text, and structured data, into a unified system for decision support [22].

Table 1. Summary of various key works in CKD.

Ref. Year Objective Methods/Approach Relevance Key Findings

[23] 2024 To classify and Utilized Vision Achieved 94.38% EfficientNet-b1l
segment kidney Transformers classification accuracy achieved 94.38%
MRI images for (EfficientNet_b1) for and superior accuracy; the
timely CKD classification and segmentation segmentation model
detection and ResNet18-Self-ONN- performance, achieved an IoU of
diagnosis. UNet++ for segmentation enhancing early CKD 82.34% and a DS of

with CLAHE diagnosis using MRl 91.57%.
preprocessing and data.
STAPLE post-processing.

[24] 2024 To detect CKD Introduced Eurygaster =~ Demonstrated EOAEDL-CKDD
using feature Optimization Algorithm superior CKD achieved optimal
selection and (EOA) with an ensemble detection performance detection rates with
hyperparameter of LSTM, BiGRU, and on benchmark improved accuracy
tuning strategies for BILSTM models. Applied datasets, emphasizing and efficiency for
improved model =~ SFLA for optimal the importance of early CKD detection.
performance. hyperparameter ensemble techniques.

selection.

[25] 2024  To explore non- Analyzed peripheral Achieved 93% The ensemble model
invasive detection  pulse waveforms in the accuracy and an F- achieved an AUC
methods for medial frequency domain, score of 0.96, ROC of 0.91,
vascular combined with highlighting the demonstrating the
calcification (mVC) traditional risk factors, to feasibility of non- potential for non-
in CKD patients. build predictive models invasive mVC invasive mVC

using ensemble detection in CKD detection in CKD
techniques. management. patients.

[26] 2024 Introduces Evaluated six machine = Pioneers the use of XGB achieved the
explainable Al for learning algorithms, with explainable Alin CKD highest accuracy, and
CKD diagnosis to  extreme gradient boost  diagnosis, aiding the SHAP and PDP
address the (XGB) producing the best healthcare methods provided
limitations of performance. SHAP and professionals in transparent
"black-box" models PDP were used to making informed predictions,
and enhance provide explainable decisions with improving clinical
interpretability. predictions. Developed a interpretable insights. utility and decision-

graphical user interface making.

(GUI) to assist healthcare
professionals.
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Table 1. Summary of various key works in CKD. (Continue)

Ref. Year Objective Methods/Approach Relevance Key Findings

[27] 2023 Investigates the Predictive modeling was Demonstrates the XGBoost achieved the
potential of various employed in conjunction potential of predictive highest performance
machine learning  with 12 machine learning modeling and ML to  with 98.3% accuracy,

approaches for the classifiers, including enhance CKD precision, recall, and

early detection of =~ XGBoost, to identify the diagnosis, reducing  Fl-score. Predictive

CKD. most relevant features. = computational modeling effectively
The model evaluated 25 complexity and identified crucial
variables and identified improving predictive features for CKD
the top 30% using accuracy. diagnosis.
predictive analytics.

[28] 2023 To develop anovel Utilized DSCNN and Combines deep The proposed model
hybrid deep Capsule Network with ~ learning with IoT for  outperformed state-of-
learning network  feature selection by enhanced CKD the-art methods,
for early CKD Aquila Optimization. detection. demonstrating better
detection and STOA optimized the classification accuracy
prediction. DSCNN for with lower

classification. computational effort.

[29] 2021 To develop Evaluated models with ~ Reduces diagnosis Optimized datasets
affordable machine k-fold cross-validation  costs for CKD in and the random forest
learning models for on optimized datasets  resource-limited classifier achieved
early CKD derived from low-cost  settings. high accuracy, making
diagnosis using clinical test attributes. it effective for CKD
selective clinical test screening.
attributes.

[30] 2020 To assess the Conducted systematic Tailors CKD The J48 decision tree
applicability of ML reviews and experiments diagnostic approaches achieved 95%
techniques for CKD with ML techniques to developing accuracy, offering
diagnosis inlow-  using k-fold cross- countries. interpretable results
income, developing validation on CKD suitable for low-
countries. datasets. resource settings.

[31] 2020 Automate CKD 1-D Correlational Neural Offers a novel Achieved an average
detection using Network (CorrNN) and  salivary-based accuracy rate of
salivary analysis Bidirectional LSTM; diagnostic tool for 98.08%, advancing
and time-series tested with CKD sensing CKD. CKD detection
data. module. methodologies

significantly.

3. Methodology

The experiment utilized two datasets: slightly imbalanced and severely imbalanced. The slightly
imbalanced dataset was taken from the UCI Machine Learning Repository, and the severely imbalanced
dataset was taken from Kaggle [11-12]. The slightly imbalanced dataset was collected over 2 months from a
hospital, consisting of 24 features and a target variable. The target variable has two classes: 250 positive cases
and 150 negative cases. The severely imbalanced dataset was collected from a Hospital in the United Arab
Emirates, which consists of 21 features and a target variable with 56 positive and 435 negative cases. The
dataset included the samples of 241 men and 250 women. The slightly imbalanced dataset consists of
numerical and categorical columns. Imputation techniques were used to handle missing values. Missing
numerical values were replaced with random samples from the same column. Missing categorical values were
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filled using the mode of the same column. Inconsistent entries in categorical columns were removed and
replaced with clean values. At last, label encoding was used to convert categorical columns into numeric
values, ensuring that each unique value in a column is mapped to a corresponding numeric label, and to
prepare the dataset for machine learning and deep learning algorithms. SMOTE-Tomek was employed to
handle the class imbalance in the datasets. SMOTE works by generating synthetic examples for the minority
class based on feature space similarities between existing minority samples. This helps to reduce bias in the
model's predictions by ensuring better representation of minority instances during training. Tomek links are
pairs of instances from opposite classes that are each other's nearest neighbors. The presence of a Tomek link
indicates ambiguity or noise at the class boundary. Removing such pairs helps sharpen the decision boundary
and improve the classifier's ability to distinguish between classes. The 80% dataset was used for training the
classifiers, and the 20% dataset was used for testing the classifiers’ performance. Five-fold cross-validation
was employed using the StratifiedKFold method from scikit-learn's model_selection module to ensure that
each fold maintains approximately the same proportion of class labels. Each fold was indexed and tracked
using a variable fold, initialized at 1 and incremented during each iteration. Additionally, a small constant
epsilon (= le-10) was defined to avoid division by zero or numerical instability in metric calculations,
particularly in cases where denominators could become very small.

A total of 16 machine learning and 5 deep learning classifiers were implemented. Machine learning
classifiers include Gaussian Naive Bayes (GNB), Bernoulli’s Naive Bayes (BNB), Complement Naive Bayes
(CNB), Multinomial Naive Bayes (MNB), Decision Tree (DT), Extra Tree Classifier (ETC), K Nearest Neighbors
(KNN), Support Vector Machine (SVM), Logistic Regression (LR), Stochastic Gradient Descent (SGD), Light
Gradient Boosting Machine (LGBM), Histogram-based Gradient Boosting (HGB), Adaptive Boosting (ADB),
Gradient Boosting Machine (GBM), Categorical Boosting (CB), and Extreme Gradient Boosting (XGB). Deep
learning classifiers include Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent
Unit (GRU), Bidirectional GRU (BiGRU), and Recurrent Neural Network (RNN). LSTM, GRU, and RNN
architectures share a similar sequential structure. Each classifier consisted of five layers with decreasing
numbers of neurons — 128, 64, 32, 16, and 8 - utilizing the ReLU activation function. The five bidirectional
layers in each model have decreasing numbers of units — 128, 64, 32, 16, and 8 - with the first layer specifying
the input shape and utilizing the tanh activation, while subsequent layers use the ReLU activation. All five
deep learning classifiers include a dropout layer with a dropout rate of 0.2 to prevent overfitting, as well as a
final dense layer with a sigmoid activation function for predicting the disease. The proposed GBM model’s
hyperparameters are tabulated in Table 2.

Table 2. Parameters of GBM

S. No. Hyper-Parameter Value
1 loss log_loss
2 learning_rate 0.1
3 n_estimators 200
4 subsample 0.8
5 criterion friedman_mse
6 max_depth 7
7 min_samples_split 4
8 min_samples_leaf 2
9 max_features log2

10 random_state 42
11 verbose 1

Thirteen metrics were considered for evaluating the classifiers. These metrics include testing accuracy,
precision, sensitivity, F1 score, F2 score, specificity, balanced accuracy, Mathews Correlation Coefficient
(MCC), AUROC, AUPRC, Likelihood Ratio Positive (LR+), Likelihood Ratio Negative (LR-), and H-measure.
Testing accuracy can be used as a baseline metric, but it is often misleading in imbalanced datasets. So, other
metrics must be considered for balanced evaluation. Precision and sensitivity were included to ensure the
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classifier does not over-predict the minority class and to measure how well the model captures the minority
class. In imbalanced datasets, the F1 score is highly relevant, as it balances both sensitivity and precision. The
F2 score gives more preference for sensitivity and is crucial when false negatives are more important than
having false positives. While sensitivity focuses on the minority class, specificity evaluates how well the
classifier identifies the majority class. Balanced accuracy measures the classifier's performance on both the
minority and majority equally by averaging sensitivity and specificity. MCC is useful for imbalanced datasets
as it evaluates the correlation between predictions and accurate labels by considering all true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). AUPRC is more useful than AUROC in
imbalanced datasets. LR+ helps understand the strength of positive predictions and avoids over-reliance on
the majority class bias. LR- ensures the classifier can eliminate cases as the majority class while correctly
identifying most minority class cases. The H-measure is especially useful for imbalanced datasets because it
allows for the weighting of false positives and negatives based on their respective importance in the specific
problem domain. The H-measure was calculated using the trapezoidal rule and then normalized to the range
of [0, 1]. For better interpretability, the results were expressed as percentages. It is considered an alternative to
AUROC.

4. Results and Discussion

This section analyzes and compares the results based on the proposed methodology to provide key
insights. It is divided into two subsections: the first presents the performance of classifiers on a slightly
imbalanced CKD dataset, while the second examines their performance on a severely imbalanced dataset. A
detailed discussion of these results is provided below.

4.1. Results of classifiers on the slightly imbalanced dataset

GBM achieved the highest testing accuracy of 99.25% + 0.68, surpassing all other models, including
other high-performing classifiers such as HGB, CB, LSTM, and BiLSTM, each of which achieved accuracies of
nearly 99%. GBM achieved a superior precision of 99.35% + 1.44, outperforming models such as CB, LSTM,
and BiLSTM, and is significantly higher than that of probabilistic models, including GNB, CNB, and MNB,
which achieved precision scores below 88%, as shown in Table 3.

GBM achieved a sensitivity of 98.67% + 1.83 and outperformed all models in specificity, achieving
99.6% + 0.89%, which demonstrates its predictive power in classifying negative instances and minimizing false
positives correctly. The F1 score of GBM was 98.99% =+ 0.92, the highest among all classifiers, and achieved an
F2 score of 98.79% =+ 1.38. GBM also achieved the highest balanced accuracy of 99.13% + 0.84, indicating its
effectiveness across both positive and negative classes, especially in scenarios with class imbalance. An MCC
of 98.42% + 1.44 was also the highest observed, further reflecting the GBM's strong overall correlation between
predicted and actual outcomes. GBM achieved an AUROC and AUPRC value of 100% * 0.00, outperforming
other models such as ETC, SVM, CB, LSTM, and BiLSTM, which reported AUROC and AUPRC scores above
99.8%. GBM achieved the highest H-measure of 64.98% + 0.00, which was the highest among all models. GBM
performed its best in the first fold, as shown in Figure 2.
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Figure 2. (a) Confusion Matrix, (b) AUROC, (c) AUPRC of GBM on the slightly imbalanced dataset.

GBM demonstrated superior performance across nearly all evaluation metrics. It achieved the highest
testing accuracy, precision, F1 score, specificity, balanced accuracy, MCC, AUROC, and AUPRC. GBM also
recorded a high LR+ value, indicating its stronger ability to identify true positives with fewer false positives.
Additionally, GBM achieved a lower LR- (0.01) compared to traditional models, demonstrating its ability to
reduce false negatives effectively. It also achieved the highest H-measure of 64.98%, making it statistically strong.

4.2 Results of classifiers on a severely imbalanced dataset

GBM achieved the highest testing accuracy of 92.26% + 2.23 among all models, outperforming
ensemble methods like ADB, CB, and GRU, as well as deep learning architectures such as BILSTM and RNN,
reflecting its strong generalization capability on unseen data. GBM outperformed other models, including
ADB and CB, in terms of precision, particularly in its ability to avoid false positives. GBM outperformed other
models in terms of F1 score, followed closely by CB and GRU, highlighting GBM’s ability to handle class
imbalance. GBM stands out with a specificity of 96.09% + 2.65, demonstrating its ability to correctly identify
negative cases, which is crucial in domains where false positives can be costly. GBM achieved a balanced
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accuracy of 79.18% +7.21 and an MCC of 61.09% + 11.10, suggesting a decent correlation between predicted
and actual labels, even in the presence of class imbalance. In terms of AUROC, GBM scored 90.79% + 3.90 and
achieved the highest AUPRC of 69.11% + 11.41. GBM achieved an LR+ of 26.2 + 22.45, the highest among all
classifiers, indicating a powerful increase in the odds of disease presence when the test is positive, and an LR-
of 0.39, reflecting a decreased probability of disease when the test is negative, as shown in Table 4. Figure 3
depicts the second fold results of GBM, which are the highest among the five folds. Table 3 shows that several
models, including CB, LSTM, BiLSTM, and GRU, performed competitively on the slightly imbalanced dataset,
achieving near-perfect metrics across accuracy, precision, and AUROC. However, GBM outperformed all
classifiers, achieving high AUROC and AUPRC values of 100%, the highest precision of 99.35% + 1.44, and the
highest balanced accuracy of 99.13% + 0.84. On the severely imbalanced dataset, shown in Table 4, GBM again
emerged as the top performer, with the highest testing accuracy of 92.26% + 2.23, specificity of 96.09% + 2.65,
and AUPRC of 69.11% + 11.41, along with the highest LR+ of 26.2 + 22.45. It also maintained strong sensitivity
and F1 scores, indicating a reliable balance between correctly detecting both positive and negative cases. From
these results, it is evident that GBM performed robustly across different imbalance scenarios and consistently
outperformed other classifiers, making it the most suitable model to be proposed.
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Figure 3. (a) Confusion Matrix, (b) AUROC, (c) AUPRC of GBM on a severely imbalanced dataset.

5. Conclusions

Chronic Kidney Disease (CKD) is a pervasive health issue that requires timely and accurate detection
to mitigate severe health complications. While Artificial Intelligence (AI) has significantly advanced CKD
diagnostic capabilities, addressing data imbalance remains essential for achieving accurate results. Although
many Al techniques perform well on balanced datasets, a thorough investigation of methods that excel in
handling imbalanced datasets has not been conducted extensively. This research highlights the importance of
addressing data imbalance to improve the performance of Al models in real-world scenarios, where instances
of the minority class are often underrepresented. Through comprehensive experimentation, this research
evaluates the performance of multiple classifiers on both slightly imbalanced and severely imbalanced CKD
datasets. The findings highlight that GBM exhibits superior performance. With specificities of 99.6% + 0.89 and
96.09% =+ 2.65 for slightly and severely imbalanced datasets, respectively, the GBM model demonstrated
significant performance in predicting true negatives. Furthermore, metrics such as AUROC (100% and 90.79% + 3.9),
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LR+ (7.86 x10"9 + 4.40 x10"9 and 26.2 + 22.45), LR- (0.01 + 0.01 and 0.39 + 0.15), and H-measure (64.98% and
84.54% + 3.41) highlight the model’s efficacy in effectively distinguishing between classes.

5.1 Limitations

Although the proposed model has shown decent performance across all evaluation metrics, including
a testing accuracy of 99.25%, an AUROC of 100%, and a balanced accuracy of 99.13%, some limitations remain.
The datasets utilized for the experiment may not represent the demographic characteristics of patients across
the globe. Model’s generalizability may be affected by variations in diagnosis practices and demographic
characteristics. There is a possibility of a decline in performance when the model is faced with missing or noisy
data. The proposed model was trained using the past data, which might not have taken into consideration
changes in clinical patterns over time.

5.2 Clinical and Healthcare Implications

The performance of GBM shows its potential in clinical practice for the early detection of CKD. It can
be used as a support system for nephrologists and physicians for identifying high-risk patients at the early
stages to reduce the likelihood of progression of the disease. GBM-based decision support tools can be used
in electronic healthcare record (EHR) systems to identify abnormal patients during check-ups. The predictive
power of the GBM makes it a promising system for reducing diagnostic delays and improving long-term
patient outcomes. By continuously analyzing patient data, GBM can help medical practitioners identify
patients who are suffering from CKD, leading to more effective disease management, which is beneficial in
primary care settings.

5.3 Feasibility of Real-World Implementation

Due to the efficiency and relatively low computational demands at inference time, the practical
implementation of GBM in real-world healthcare settings is promising and feasible. It can be integrated into
clinical software systems, even in resource-limited environments such as rural or under-funded hospitals. It
can also be operated on cloud-based platforms that connect to local health centers. Integration with IoT-based
monitoring systems to enable continuous monitoring of CKD-relevant patterns through wearable or home-
based devices can support long-term patient monitoring. In addition, GBM can be deployed using scalable
architectures that support modular updates, making it easier to improve and adapt the system over time as
more patient data becomes available to ensure that the model remains accurate and relevant across diverse
patient populations and clinical scenarios.

5.4 Future Scope

Future research should include validating the proposed model using larger datasets and focus on
integrating explainable AI (XAI) techniques that can help clinicians better understand the predictions,
improving healthcare trust. Additionally, federated learning can be employed to train models across
healthcare institutions without compromising patient privacy. The incorporation of attention mechanisms in
sequence-based deep learning models like LSTM or Transformer architectures can allow the system to focus
on clinically significant temporal patterns, such as gradual changes. Exploring hybrid models that combine
machine learning techniques with deep learning architectures may yield both accuracy and interpretability,
balancing computational efficiency with robustness.
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