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Abstract: Structures made of stainless steel experience a gradual deterioration
in their fundamental properties when exposed to both mechanical stress and
harsh environmental conditions. This study aims to analyze the impact of cold
tensile deformation on the localized roughness corrosion of 304L stainless steel
in a 3% NaCl solution, mimicking seawater conditions. Corrosion tests were
performed on samples obtained from standardised tensile specimens of the
Public Economic Enterprise for the Production of Bolts, Cutlery, and Faucets
(BCR) in Boumerdes, Algeria, which had experienced deformation at strain
levels of 2.18%, 3.63%, 10.90%, and 16.36%. The results, including corrosion
susceptibility, pitting behavior, and repassivation potentials, were evaluated
and compared based on the strain. Findings indicate that all measured potentials
decrease as the strain increases, except for the roughness potential, which shows
a significant decline. This suggests a notable reduction in the material's corrosion
resistance with higher deformation levels.
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1. Introduction

excellent resistance to uniform corrosion. This corrosion resistance is
primarily attributed to the formation of a stable, self-healing passive oxide film
on the surface. Among these materials, austenitic stainless steels, such as 304L,
offer an optimal balance between mechanical strength, ductility, and corrosion
resistance [1, 2]. This study aims to address this gap by experimentally
evaluating the effect of cold deformation on the pitting corrosion behavior of
304L stainless steel. Tests were made on specimens of the public economic
enterprise for the production of bolts, cutlery, and faucets (BCR) in Boumerdes,
Algeria. Corrosion in metals is an electrochemical process where metals return
to their thermodynamically stable oxidized state when exposed to oxidizing
environments. In steel, iron reacts with oxygen and moisture to form rust, which
can detach and expose new surfaces to further corrosion. While general
corrosion is relatively predictable, localized corrosion mechanisms such as
pitting are more complex and severe.

Pitting corrosion involves the localized breakdown of the passive layer,
leading to rapid, concentrated attack at discrete sites. It requires careful study of
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electrochemical kinetics, metallurgical microstructures, and mechanical factors. Although the electrochemical
behavior of 304L stainless steel in chloride-containing environments has been extensively investigated [3, 4,
5], limited research has addressed how prior cold deformation influences its susceptibility to localized pitting
corrosion. The corrosion resistance of stainless steels is mainly due to their chromium content, typically above
10.5%, which ensures the formation of a protective chromium oxide layer. Alloying elements such as nickel
stabilize the austenitic structure and improve toughness and ductility. Additions of molybdenum and
titanium can further enhance resistance to localized corrosion and high-temperature degradation [6, 7].
However, the passive film in stainless steels is not immune to breakdown. Aggressive ions such as chlorides
can penetrate through defects, inclusions, or microstructural heterogeneities, leading to localized film failure.
Cold deformation increases dislocation density and residual stress, which can serve as preferential sites for
passive film breakdown and pit initiation. Understanding the combined effect of mechanical deformation and
corrosive environments is essential for predicting service performance and ensuring structural integrity.

2. Materials and methods

Stainless steel is categorised into five principal types and exists in over one hundred variations.
Diverse applications of temperature regulation for austenitic, heat-resistant materials; Ideal for elevated
temperatures: ferritic, exhibiting resistance to corrosion and cracking; Martensitic; durable; Duplex (a
combination of ferritic and austenitic steel) provides a wide range of options; Semi-austenitic (precipitation-
hardened) alloys, composed of aluminium, niobium, and copper, exhibit considerable strength [8, 9].
The advantages of stainless steel include robust corrosion resistance, straightforward and efficient
maintenance, durability and strength, aesthetic simplicity, and minimum environmental impact. Stainless
steel possesses various disadvantages, including relatively high cost, lack of environmental friendliness,
potential for allergic reactions, susceptibility to smudges, and non-biodegradability [10, 11].

2.1 Utilized Material

The material utilised in this study is the austenitic steel 304L, provided and shaped in the form of sheet
metal by the company BCR from Bordj M’Nail (Boumerdes), showing its chemical composition [12]:

Table 1. Chemical composition of the sampling

Chemical components (%)

Fe Cr Ni Si Mn Mo C
Base 18.78 8.80 0.45 1.34 0,27 0.06
2.2 Applied Material

Considered as 18-8 stainless steel, stainless steel 304 (AISI 304) is the most often used variant with 18-20%
Cr and 8-10.5% Ni. This 304 is non-magnetic at annealed circumstances, but following cold processing (such
as drawing, bending, rolling...), a part of the austenitic structure is changed into a mildly magnetic martensite.
AISI 304 material provides high resistance to air corrosion and oxidation. Its high nickel-chrome alloy
concentration offers it good corrosion resistance, making it suitable for end use in the food sector [13- 14].

2.2.1 Tensility assays

The tensile trials were conducted using a Zwick-type equipment at the University of Jijel. It features a
digital system linked to a computer that facilitates the graphing of tensile curves and yields results like
maximum load, elongation at rupture, etc. [15].

2.2.2 Corroding evaluations

Electrochemical studies were done utilising a computer-controlled EG&G Model 283 potentiostat. The
I(E) polarization curves were made with Soft CorrllI software.

At the start of the experiment, the metal works as the cathode of the cell. The applied voltage grows
positively, and at a predetermined threshold, the metal switches to the anode of the cell. The ensuing corrosion
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morphology mimics that of natural corrosion when the specified potential is close to the natural corrosion
potential. The cyclic polarization curves obtained (I(E) assist in the identification of corrosion potentials,

pitting potentials, and repassivation potentials.

Passivation includes introducing a substantial amount of chromium (Cr) into the steel (> 10.5% by mass).
Chromium interacts with the oxygen in the air and generates a coating of chromium oxide, Cr203: 4Cr + 302
— 2 Cr20s. The compact, adherent, and protective layer is called the "passive layer" [16-18].

2.2.3 Microscopic rigidity experimentations
Rigidity of an iron specimen, exclaimed. The hardness of a stainless steel sample is a characteristic

used to describe materials. In our situation, we measured Vickers hardness [19-20].

2.3 Operating modelling conditions

2.3.1 Tensile experiments
The samples, upon arrival, are cold-rolled sheets with a thickness of 3 mm. The steel plates were cut

into standardized specimens at the University of Batna. Figure 1 displays the dimensions of the specimens

utilized in our study: the gauge length measures 27.5 cm [21-24].
Figure 2a displays the stress-strain curve derived from 304L steel with a strain of 5 mm/min. In this

scenario, the elongation corresponding to the maximum load is 48 mm.

27 50 em

Figure 1. Dimensions of a tensile sampling
We have chosen the following intermediate elongations: 6 mm; 10 mm; 30 mm; and 45 mm, which correspond
to strains of 2.18%, 3.63%, 10.90%, and 16.36%, respectively. These strains were computed using the following
formula :
Ly — Li

L;

A% =
A% : Strain
Li: Specimen length before deformation

Le: Specimen length after deformation
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Figure 2a. Conventional tensile curve of 304L steel
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2.3.2 Corrosion experiments

For electrochemical investigations, discs of 1 cm?2 section were punched out from the usable portion
of the specimen that underwent tensile testing. Surface preparation involved polishing with abrasive papers
ranging from 600 to 1200 granulometry, followed by fine polishing with a 3 um diamond paste until a mirror-
like finish was reached. Finally, they were cleaned in an ultrasonic immersion containing acetone and dried
with compressed air [25-26].

Figure 2b. Evolution of the corrosive state of the 304L stainless steel specimen

Corrosion experiments on these materials were done in a Tacussel CEC/TH three-electrode
electrochemical cell, holding 400 ml of 3% NaCl solution, at laboratory ambient temperature, under aerated
conditions and without agitation as indicated in Figure 2b. Potentials were measured relative to the saturated
calomel electrode (SCE) [27-28].

3. Results and discussion

3.1 Hardness measurement

Mechanical hardness testing is central in the assessment of the mechanical characteristics of iron
materials because the hardness values permit one to evaluate the material's resistance to deformation,
accompanied by a rough estimation of its hardness parameters, flow stress, among numerous other essential
features. Thus, the primary goal of this work has been to create and analyze a computerized approach based
on image processing and analysis algorithms that may be employed for determining the Vickers hardness
level using hardness strain imaging [29]. The material sample must have a laboratory surface unaffected by
fluids, oxidation, flaws, and numerous contaminants to be studied with Vickers hardness. To supply the tester
with total faith in the measured results, the experiment's surface must also be smooth and straight. In addition,
it is crucial to ensure that the specimen under evaluation has no abnormalities on its contrasting face and that
there are no shocks or damages to the testing equipment [30-31].

Figure 3 depicts the fluctuation in hardness as a function of strain rate. This graphic indicates that
hardness varies practically linearly with the stress rate. The increase in hardness derives from the degree of
work hardening, which increases with the severity of the tensile test [35].
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Figure 3. Micrograph sections of 304L stainless steel deformed by tensile : (a) 2.18%; (b) 3.63%; (c) 10.90%; (d) 16.36%.
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3.2 Microstructure

These microstructures reveal the polygonal austenite grains with a nanoparticle size and the fully
austenitic structure indicative of annealing twins. Microraphs represent the manifestation of strengthening
pairs with disarticulated austenitic assembly.
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Figure 4. Micrograph sections of 304L stainless steel deformed by tensile (20 pm): (a) 2.18%, (b) 3.63%, (c)
10.90%, (d) 16.36%

The reverted austenite particles and recrystallized small grains, along with untransformed granules,
are the essential properties of these microstructures. The quantity of strain-induced martensite has dropped,
which is congruent with the reversal cycle already mentioned for X-ray fragmentation studies [32].
A tensile or compressive force that continues across the entirety of a material in the absence of an external load
is known as residual stress. Remaining stresses are commonly broken into three categories according to the
length scale. Macro-scale stresses, which last for lengthy spans of multiple grain diameters or more, are one
category. Macro balance residual stresses indicate ongoing disparity. The change of stainless steel during
forming, differential cooling throughout the wall thickness and along the surface during rolling, and localized
plastic deformation during handling are common explanations. The other one varies depending on the grain
size of the microstructure's morphology [34]. Cold plastic deformation modifies the texture of 304L steel by
generating a change in the shape of the grains. During the tensile test, in the plasticity zone, the grains elongate
in the direction of the tension. It is noted that the fragmentation into bands and dislocation cells alters the
crystal orientation and progressively loses the unique character of the grains (Figure 4).

3.3 Polarization Experiments

From its conception to its most current improvements, the growth of electrochemical potentiokinetic
techniques as they correspond to analyzing metals and alloys is followed. These procedures are applied to
study the structure and characteristics of stainless steels and some mixed metals, and also for analyzing them
for inter-particle corrosion and pitting corrosion in Figure 2b. It is vital to differentiate between polarization
graphs associated with particle boundaries and the general structure of the alloy grains (the framework) while
studying the propensity of inter-particle and pitting corrosion, applying potentiokinetic polarization tests.
Features, potentials, and other properties revealed in the "dual process" analysis may be applied to determine
an alloy's ability to undergo intergranular, pitting, and cracking corrosion by periodic polarization tests such
as the electrochemical potentiokinetic reactivation (EPR) test. EPR technique for testing enables the capacity
of the alloy to pits, intergranular corrosion, and cracking corrosion to be derived from specific characteristics
disclosed in the "doubling cycle" test. EPR is rapid to adapt and considers the multiple influences on a
material's qualities. The electrochemical potentiokinetic measures can be used for non-destructive testing to
clarify the characteristics and responses of materials, as they can sufficiently identify morphological
modifications in thermally treated materials that extend beyond stainless steel [35]. The influence of tension
deformation on the pitting corrosion behavior of 304L steel was evaluated using the potentiokinetic technique,
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by imposing a potential sweep on the sample at a rate of 100 mV/min throughout [-0.45 ~ 0.9 V]. The factors
to determine are the corrosion potential (E_c), pitting potential (E_p), and repassivation potential (E_rp).
Figure 5 displays a conventional cyclic polarization curve demonstrating these distinct potentials. In our
example, we obtain the curves given in Figure 6 for each of the examined strains.
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Figure 5. Standard cyclic polarization curve showing the corrosion potential Ec, pitting potential Ep, and
repassivation potential Erp

Polarization shapes electrochemical measurements, which can give the needed non-destructiveness,
accuracy, duplication, and speed of the process of execution. The polarization curve is a visual picture of the
potential propensity link to the corrosion phenomena, which, as a policy, constitutes a steel electrode ensnared
in a solution corrosion environment. The roughness of the most fantastic range of corrosion environments is
assessed by the polarization trajectory, which also investigates the corrosion pattern of metals and alloys. The
rationale for this is that "governed electrochemical polarization” may duplicate a wide range of corrosion
processes and phenomena during a given gauging cycle by preserving command of the media's oxidizing
strength without needing to move between diverse corrosion contexts. The first thing to know is the type of
measurement to reliably distinguish the EPR test from other equivalent processes whose purpose and
parameters may be different. This can help you understand an experiment of polarization and to accurately
analyze the repercussions of many components, on curves exhibiting more sophisticated shapes.
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Figure 6. Cyclic polarization curves of 304L steel immersed in 3% NaCl, deformed at various rates by tensile.

The pitting corrosion of 304L stainless steel is tied to the stability of the passive film. This stability
takes into account the potential between the metal and the solution. Figure 6 depicts the variability in current
density with potential when 304L steel is immersed in 3 % NaCl. Pitting corrosion occurs beyond 0.34 V, in
the transpassive domain. A stable pit generated above the pitting potential continues to expand at lower
potentials until the repassivation potential; beyond that, repassivation happens. Repassivation potential is
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consequently the one below which an already created pit is protected from corrosion, and repassivation is
achievable [36]. The modest difference (Ep — Erp) demonstrates valuable resistance to pit growth: the
narrower, the more substantial, and the better the corrosion resistance. The breadth of the domain (Ep — Erp)
represents the potential of pits to repassivate [37]. Figure 6 led to getting the values of potentials Ec, Ep, and
Erp as a function of the varied rates, presented in Table 2. The determination of the domain width (Er — Erp)
demonstrates that its extent grows with the increase in the strain. Thus, there is considerable resistance to pit
development at low strains.

Table 2. Corrosion, pitting, and repassivation potentials of 304L steel immersed in 3% NaCl at several strains

E ;:f)'/:)’) Ec Ep Erp Er-Erp  icon (HA/cm?) Co(r::;};:::)ate
281 32056 34036 13044 47080 04 46
3.63 36050 40020 -14012 54032 07 8.1
10.90 38046 44010  -15000 59010 12 13.8
1636 42030 43045 20096 63141 20 23.0

We illustrated the development of these potentials in Figure 7. The corrosion potential tends to drop
with increasing strain, making it less noble and more prone to corrosion. The same applies to the repassivation
potential, whose decline equates to a decreasing resistance to pitting corrosion. On the other hand, the pitting
potential, at the onset of the transpassive domain, tends to decline with the rise in the strain, resulting in a
considerable reduction in the passivation domain, as indicated in Figure 6.

3.4 Infinitesimal examinations

The microscope investigations also demonstrated the occurrence of excess non-metallic inclusions on
surface samples during corrosion testing. Following corrosion testing, metallographic examinations of the
sample reveal that the degree of plastic deformation significantly affects the severity and type of corrosion
alterations [38]. Research led to the conclusion that there would be an increase in deformation within the
spectrum of a growth in the number, size, and depth of pits. According to acquired assessments, the crack
surfaces operate as the anode of a local corrosion cell where metallic degradation takes place. The unstable
steel sample underwent microscopic examination, revealing different levels of corrosion resistance in a 3%
NaCl solution. A variety of hypotheses have been proposed to describe the stress corrosion phenomena. Of
these, stress adsorption and electrochemical dissolution are the two fundamental ideas that have been put out.
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124 —e— Repassivation Potential(Erp)
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£ 104
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Figure 7. Variation of corrosion, pitting, and repassivation potentials as a function of the strain

The recorded anodized polarization charts indicate the existence of a passive interval. The repassivation
potential varies between -130 and -200 mV.
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Figure 8. Pitting on the surface of 304L steel micrograph taken by visualizing electron microscopy

The corroded regions of the steel framework are examined microscopically, both before to and
following predeformation at various degrees. Interparticular corrosion was identified as the principal source
of the corrosion observed in the provided sampling.

Inclusion of MnS

AccV Spot Magn Det WD Exp f————— 5m
g 1

Figure 9. Micrographs obtained by scanning electron microscopy (SEM) showing an MnS inclusion

We conducted electron microscopy to illustrate the shape and scale of the pit dimensions (about 40
um) (Fig. 8) and to reveal the existence of manganese-based inclusions on the material's surface (Fig. 9).
These inclusions may serve as starting locations for pits within the passive coating of stainless steel [39, 40].
Table 1 demonstrates that the material exhibits a substantial manganese content, which leads to the production
of manganese sulfide (MnS) inclusions in the presence of sulfur. The presence of MnS functions as a
microelectrode when steel is exposed to an aggressive solution such as NaCl. In its vicinity, the passive layer
is affected, and the creation of pits is quite possible.

4. Conclusion

This study assesses how surface corrosion deterioration affects the tensile properties of exposed
specimens. The damaged experimental specimens were obtained from a model initially exposed to real-world
corrosion and subsequently meticulously cleaned on a surface that preserved its original characteristics. In
addition to the loss of the authentic piece, the two principal factors that significantly impact strength reduction
are the variation in material characteristics due to corrosion and stress concentration resulting from localised
rust pits. A comparable stress-strain curve illustrating the corrosion levels of degradation for both preserved
and corroded steel plates. The experimental test produced findings indicating the critical fluid media
environment of the specimen with an increasing degree of deterioration due to pitting corrosion. This research
paper aimed to assess the impact of tensile deformation at varying velocities on the behaviour of 304L stainless
steel exposed to a sodium chloride aqueous environment simulating seawater (3% NaCl). The gathered results
enable us to draw the following conclusions: the individual character of the grains gradually vanished as the
strain reached 10.9%, while the hardness of the steel rose with increasing strain; additionally, the presence of
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MnS inclusions created suitable locations for pitting initiation, and the passivation domain diminished with
high strains; furthermore, repassivation of pits was more probable for low distortions and generated stronger
resistance to local corrosion, whereas the pitting potential tended to diminish with rising strain, resulting in a
significant drop in the passivation domain.
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