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Abstract: In this study, the differential pulse voltammetry with a gold
electrode and machine learning was employed to detect adulteration in orange
juices. The method assessed both natural and commercial juices, along with their
mixtures containing known proportions of natural juice. Initially, an
unsupervised machine learning algorithm, Cluster Analysis (CA), was used to
highlight differences, demonstrating the ability to distinguish between natural
and flavored orange juices. Subsequently, supervised machine learning
methods, including Interval Partial Least Squares — Linear Discriminant
Analysis (iPLS-LDA) and Interval Partial Least Squares — Random Forest (iPLS-
RF), were applied for classification purposes. The RF model achieved up to 95%
classification accuracy, greatly exceeding 67.5% of iPLS- LDA. This enables
reliable detection of orange juice adulteration. The RF model struggled to
accurately distinguish between the “Natural” and “Mixed” categories,
particularly for samples containing a medium proportion of natural orange juice
(around 45-50%). The integration of voltammetric fingerprints with machine
learning enabled a fast, cost-effective classification method for on-site analysis
with portable sensors. This approach proved more efficient than other complex
analytical techniques.

Keywords: Voltammetry; machine learning; orange juice adulteration; Interval
Partial Least Squares (iPLS); Linear Discriminant Analysis (LDA);

1. Introduction

In the food industry, classifying and controlling the quality of
agricultural products, especially fruits, is essential for maintaining standards
and protecting consumer health. Among these fruits, oranges are highly valued
for their rich content of vitamins, fiber, and antioxidants. However, due to their
popularity, fresh orange juice products are frequently targeted for adulteration
with chemical flavorings [1], leading to counterfeit products [2, 3] and
commercial fraud involving natural orange juice. Recent advancements in
machine learning have greatly improved the processing of large datasets,
enabling rapid chemical analysis of various products. This has enhanced
adulteration detection and geographical indication verification with high
sensitivity and accuracy. As a result, machine learning has become a valuable

tool in safeguarding food integrity and ensuring the authenticity of agricultural and food products [4, 5]. To
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identify and classify analytical samples, two basic approaches are commonly employed: i) Targeted analysis:
This method utilizes datasets containing the concentrations of specific compounds in multiple samples.
Certain compounds serve as markers to assess authenticity and classify products. For example, polyphenol
content can help detect adulteration in different types of orange juice [6, 7], while flavonoid content can
distinguish grapefruit juice from other citrus juices [8] or differentiate concentrated and non-concentrated
orange juices with high accuracy [9]. However, targeted analysis requires high analytical costs, as managing
multiple parameters across samples demands significant resources. ii) Non-targeted analysis: This approach
considers the entire dataset, including all measured signals, without identifying specific compounds.
Spectroscopic techniques such as UV-VIS, NIR [11], Raman [10], and NMR [12] have been effective in
providing data for statistical analysis, enabling the detection and quantification of adulteration in orange and
grapefruit juices [10].

Machine learning algorithms enhance classification accuracy in non-targeted analysis. Unsupervised
methods like Principal Component Analysis (PCA), Support Vector Machines (SVM), Data-Driven SIMCA,
and soft-PLS-DA outperform traditional PLS-DA. Additionally, algorithms such as logistic regression, PCA,
SVM, and Artificial Neural Networks (ANN) have proven effective in handling high-dimensional and
complex analytical data. These techniques not only aid in identifying characteristic chemical markers but also
optimize classification through highly accurate predictive models [14, 15]. Recently, the integration of
multivariate analysis (chemometrics) with electrochemical analysis has offered outstanding advantages,
including high sensitivity and selectivity, rapid analysis time, effective data processing, and the ability to
eliminate background noise [16]. This approach enables not only the simultaneous quantification of organic
acids [17] or polyphenols [18] in fruit juices (e.g., orange, lemon, and others) but also the classification of fruits
with an accuracy exceeding 90% [18].

This study aims to assess the feasibility of the voltammetric method with a gold electrode for
analyzing natural and commercial orange juice. It focuses on different orange varieties and mixtures of natural
and commercial juices. Data from voltammograms (current intensity vs. potential matrices) are combined with
machine learning to develop models for classifying natural and commercial orange juice and predicting
adulteration ratios. This approach not only enhances the accuracy of food fraud detection but also opens up
broader application potential in the food industry.

2.1 Reagents, Reference, and Standard Solutions

Hydrochloric acid (HCl, 37%) was procured from Sigma Aldrich (Singapore). Methanol (Merck,
Germany) was utilized for preparing standard solutions, while Milli-Q water used for dilutions was obtained
from a Milli-Q water system (Merck, Germany).

2.2 Sampling and sample preparation

All orange samples belonged to the Citrus sinensis variety and were collected from various regions of
Vietnam. A total of 80 samples were sourced from 8 provinces: Hoa Binh, Ha Giang, Ben Tre, Vinh Long, Nghe
An, Bac Giang, Hung Yen, and Quang Ninh. Each fruit was cut and juiced. Additionally, 50 commercial orange
juice samples were collected from supermarkets in Hanoi, Vietnam. These samples included bottled or canned
juices from brands such as Mirinda, Fanta, TH, Splash. For the adulteration study, two samples of pure natural
orange juice were mixed with commercial orange juice at nine different adulteration levels: 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, and 90% natural orange juice. Each adulteration level was prepared in triplicate. A
total of 54 blended samples was synthesis. Additionally, there is one sample of difference that was mixed (the
other orange juice sample was mixed with a commercial sample at 10, 40, 60, and 90%) and added to the data.
The sample preparation was simple, starting with centrifugation of the juices for 10 minutes at 13,500 rpm.
After that, a 1:4 dilution with 0.1 M HCl was performed to reach a pH of about 1.2. Each sample was prepared
in triplicate. The samples were freshly prepared and measured immediately without storage.

2.3 Data Acquisition

Electrochemical measurements were conducted using the 797 VA Computrace instrument (Metrohm,
Switzerland). This instrument, controlled by VA Computrace software, consisted of a complete measurement
system, including a gold working electrode, an Ag/AgCl reference electrode, and a platinum auxiliary
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electrode. For each sample, a 100 pL droplet was used as the sample volume. Differential pulse voltammetry
(DPV) was employed to record voltammograms under the following experimental conditions: Scan range: -
0.2V to+1.2V (vs. Ag/AgCl); Pulse amplitude: 50 mV; Step potential: 5 mV; Scan rate: 10 mV/s. The raw data
matrices (I-E) extracted from Voltammograms of samples under the conditions

2.4 Data Analysis

To perform an exploratory analysis of the data, Cluster Analysis (CA) was employed. Raw data from
all samples were utilized, and the mean value of the three replicates for each sample was calculated and used
in the analysis. To assess the effectiveness of the methodology, confusion matrices were generated, and
performance metrics such as accuracy were determined. Accuracy was calculated as the ratio of correctly classified
samples to the total number of samples, providing a clear measure of the model's classification performance.

2.5 Methods
2.5.1 Cosine similarity

x-y
llxIl 1yl

Where x and y are vectors for which the similarity is to be computed.

cos(6) =

2.5.2 SNV

To standardize the spectral data, each spectrum x = (x1, x2,...,xk) is first centered by removing its mean,
and then scaled using the standard deviation. This process results in a normalized vector z = (z1, z2,..., z k)
where the data have zero mean and unit variance, facilitating comparison across different spectra.

X — X
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The data is standardized using the SNV (Standard Normal Variate) method to remove variations
caused by scattering effects and correct baseline shifts. After standardization, the data is further processed
using the Savitzky-Golay filter with a window length of 15, a polynomial order of 3, and a second derivative
calculation. This step smooths the data, reduces noise, and enhances important spectral features for

Z; =

subsequent analysis.

2.5.3iPLS.

The data X (p features) is divided into n intervals, and a local PLS model is built for each interval to
select the best interval. In PLS regression, similar to PCR, we aim to find components z that are linear
combinations of the inputs; however, unlike PCR, PLS seeks components that not only represent the predictors
x well but also serve as strong predictors of the response y y, under the assumption that both X and y can be
explained by a smaller set of components Z with k <p.

X=2ZVT+ E

2.5.4 Random Forest

Random Forest is an ensemble learning method that builds multiple decision trees using bootstrap
samples and random feature subsets at each split, which increases diversity and reduces correlation among
trees. For regression, the final output is the average of predictions from all trees, while for classification,

T
1
y= 2 ) @
t=1

where ht is the predicted value of the t-th tree for the input x, and T is the total number of trees

majority voting is used.
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3. Results and discussion
3.1 Electrochemical Fingerprint of Orange Juices

The voltammetric results of 198 orange juice samples are shown in Fig. 1 (A, B, C). The signal intensity
(I) is clearly observed in the range of potential (V) from 0.8 to 1.2 V (versus Ag/AgCl electrode), with intensity
of peak currents reaching a maximum between 0.04 mA and 0.6 mA. Some blended samples of natural and
artificial orange juice exhibited lower peak maxima, ranging from 0.02 mA to 0.04 mA. However, most signals
showed slight differences depending on the geographical origin of the samples and were quite similar to those
of natural and commercial samples. This resemblance in peak shapes and minimal variations in peak heights
made visual classification impractical. Even within the same category, whether natural or artificial, there were
significant variations in peak maxima, which could introduce considerable noise into classification models.
Therefore, signal preprocessing is essential before performing discrimination and classification.

06 05
— Natural n 0.6 — commercial — Mixed

1 (mA)

EV) Ev) EV)

Figure 1. Voltammograms of orange juice (A- natural samples; B- commercial samples, and C- blended samples)
(stra lai truc tung)

The Standard Normal Variate (SNV) algorithm was used to normalize the data, followed by second-
order derivation and smoothing using the Savitsky-Golay algorithm. The preprocessed voltammograms are
shown in Figure 2. These preprocessing algorithms significantly reduced background noise, including sample
background noise and noise caused by the equipment and experimental environment. Additionally, the
second-order derivation enhanced the signal differences between samples. These results contributed to the
stability and objectivity of classification models, thereby improving the classification performance of the
models. After preprocessing, the entire voltammetric dataset was randomly split into 158 samples (80%) for
the training and 40 samples (20% remaining) for testing to perform machine learning methods. The dataset
was first preprocessed using Standard Normal Variate (SNV) to correct for scattering effects and variations in
sample thickness. Subsequently, the SNV-corrected spectra were smoothed and differentiated using the
Savitzky-Golay filter with a 15-point window, a third-order polynomial, and calculation of the second
derivative, to enhance subtle spectral features while reducing noise.
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Figure 2. Voltammograms of orange juice after normalization using the SNV algorithm, second-order derivation,
and smoothing with the Savitzky-Golay algorithm.

3.2. Identification and authentication of orange juice

Figure 3 illustrates the results of hierarchical clustering analysis (HCA) performed on the entire
dataset of preprocessing with SNV using cosine similarity. Cosine similarity was selected as the distance
metric for hierarchical clustering because it emphasizes the similarity of signal patterns rather than absolute
intensity. In voltammetric data, current intensity may vary due to sample preparation, dilution, or
instrumental noise, while the overall shape of the voltammogram remains characteristic of the sample type.
The dendrogram shows that, even with unsupervised methods, it is possible to distinguish three data clusters:
natural orange juice, commercial orange juice, and mixed orange juice (Table 1).

20

40

% cosine similarity

Figure 3. Hierarchical clustering using cosine similarity

The results indicate that 80% of the mixed juice samples belong to the first group, while 62% of the
natural orange juice samples appear in the second group. However, in the third cluster, the distribution of
samples across the three categories does not show a clear distinction. Thus, unsupervised algorithms reveal a
clear difference between the blended orange juice and natural orange juice groups, providing a foundation for
using supervised machine learning models for classification.
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Table 1. Percentage of each sample type in each group classified.

Sample Cluster Mixed Commercial Natural
1 80% 16% 4%
16% 22% 62%
3 33% 27% 40%

3.3 Supervised learning for the detection of orange juice adulteration

After second-order derivation, the dataset showed a relatively large number of features (284 features
obtained), requiring dimensionality reduction. Therefore, the iPLS algorithm was applied to the training
dataset to reduce the number of features for building machine learning models. The iPLS algorithm selects the
most relevant spectral regions with strong discriminatory power, eliminating noisy or low-information
regions, which helps prevent overfitting and enhances model accuracy. The results of the features retained by
the iPLS algorithm are displayed in Fig. 4. Among these, 205 features, which do not have good classification
potential (highlighted in pink in the figure), were removed, leaving 79 features with the best potential for
classification. The test dataset will also use these 79 features for accuracy evaluation.

0.05 -

0.00 - —

0.05 -

—0.10 -

S8G second derivative spectra

-0.15 -

0.0 0.2 0.4 0.6 0.8 10 1.2
E(V)

Figure 4. Features selected by the iPLS algorithm

In model selection, factors such as linearity, accuracy, label differentiation (especially between natural
and commercial juices), and performance on small datasets were considered. Typically, PLS-DA, Random
Forest, Support Vector Machine (SVM), and Artificial Neural Network (ANN) with hyperparameter
optimization using GridSearchCV are preferred for classification. However, both ANN and SVM initially
achieved only 75% prediction accuracy, making them unsuitable for this study. Additionally, the small dataset
restricted the ANN's ability to capture information, while SVM strongly misclassified between natural and
commercial orange juices, further reducing its applicability. Therefore, this study only focuses on two models:
iPLS-LDA and Random Forest.

3.3.1iPLS-LDA

The iPLS algorithm was applied for dimensionality reduction using a 158x79 training dataset,
consisting of 158 samples classified into three groups (natural, commercial, and blended orange juice) with 79
features extracted from the raw data. An LDA model was then built to classify these groups, but some blended
orange juice samples were misclassified as either natural or commercial juice. Linear separation was not
achieved due to overlap between the natural and blended orange juice groups. A deeper evaluation of the
percentage of natural orange juice in the samples is shown in Fig.5, with the sample colors gradually
transitioning from white to dark, representing an increasing proportion of natural orange juice. The triangle
markers represent samples from the training dataset, while the circular markers represent samples from the
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test dataset. The results indicate that the LDA model struggles to differentiate between natural and blended
samples. This suggests that the compounds in natural orange juice may be masking the signals, making
classification more challenging.
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Figure 5. LDA plot of training dataset and test dataset projected onto LDA model space according to: A-
corresponding labels and B- the proportion of natural orange juice in each sample.

Based on Fig. 5A, it can be observed that when the training and testing datasets are projected onto the
LDA space according to their corresponding labels, there is a significant overlap between the clusters of the
"Mixed" and "Commercial" labels. This explains why certain samples are misclassified into the "Mixed" group.
This phenomenon reflects the characteristic similarity between commercial and mixed juice samples,
especially when the proportion of natural orange juice in these products fluctuates, making it challenging for
the model to distinguish between them. Additionally, Fig. 5B provides further insights as the samples are
projected onto the LDA space based on the proportion of natural orange juice. It reveals that samples with
natural orange juice proportions near the threshold between "Mixed" and "Natural" or "Commercial" are prone
to misclassification. Moreover, this issue may stem from the insufficiently strong boundaries between clusters
in the LDA space, which fail to fully capture the differences in natural orange juice proportions among the groups.

3.3.2iPLS- RF

Using the test dataset, the iPLS-RF model achieved 95% classification accuracy, demonstrating a
significant improvement over the LDA algorithm (67.5%) (Fig. 6). Based on the iPLS-RF model, only one natural
sample was misclassified as a blended one, and one blended sample was predicted as a natural one. No confusion
occurred between the blended and commercial groups, highlighting the superior potential of the RF algorithm
and, more broadly, ensemble learning methods in classifying objects based on selected spectral features.
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Figure 6. Confusion matrix of: A- LDA model on the test dataset, and B- Random Forest model on the test dataset

The Random Forest model also struggled to accurately distinguish between the "Natural" and "Mixed"
categories, especially for samples with a medium proportion of natural orange juice (around 45-50%). This
issue may stem from the inadequacy of the data features to effectively separate these two categories within
the feature space.

0.05 4

—0.05 A

dz2i/dE2

—0.10 A

—0.15 A

T T T r T T T T
0 10 20 30 40 50 60 70
No. of features

Figure 7. The second-order derivative signals vs. features of the samples classified by iPLS-LDA (red lines:
misclassification samples; blue line: correct classification samples)

To check the reasons why iPLS-DA gave the low accuracy prediction, the second-order derivative
signals of the misclassified samples (red lines) compared to the correctly classified samples (blue lines) were
shown in Fig. 7. It can be observed that the shape of the second derivative data across features differs between
correctly classified and misclassified samples. Misclassified samples exhibit abnormalities such as missing
peak points and flattened or unchanged signals. These irregularities are also associated with outliers at peak
or shoulder points in the voltammogram. This suggests that samples with abnormal shapes compared to the
overall dataset within the same group should be identified and excluded before processing. Compared with
previously reported classification results, our machine learning model achieved higher accuracy. The
limitation of working on a single device is that accurate results can only be obtained for experiments conducted
on that same device. However, when switching to another device, it is necessary to calibrate the measurement
signals and ensure similar operating conditions to the original device to maintain accuracy.
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4. Conclusion

The feasibility of using voltammetric data combined with machine learning as a screening method for
determining the authenticity of juice was confirmed. Cluster analysis revealed the differences between natural
orange juice, chemical-based juices, and blends of natural and chemical juices. Based on this, supervised
machine learning models such as iPLS-LDA and random forest were developed for classification purposes,
with the random forest model showing promising results in classification and prediction. The obtained results
also highlight the usefulness of the voltammetric method using a gold electrode to assess the authenticity of
orange juice. The limitations of the sample recognition method were addressed by increasing the sample size
and creating stronger models. Moreover, the electrochemical approach has shown that it is capable of fast
classification, low cost, and suitability for on-site analysis. This approach would enable the monitoring of raw
material procurement concerning the orange variety and growing regions.
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