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Abstract: In this study, the differential pulse voltammetry with a gold 

electrode and machine learning was employed to detect adulteration in orange 

juices. The method assessed both natural and commercial juices, along with their 

mixtures containing known proportions of natural juice. Initially, an 

unsupervised machine learning algorithm, Cluster Analysis (CA), was used to 

highlight differences, demonstrating the ability to distinguish between natural 

and flavored orange juices. Subsequently, supervised machine learning 

methods, including Interval Partial Least Squares – Linear Discriminant 

Analysis (iPLS-LDA) and Interval Partial Least Squares – Random Forest (iPLS-

RF), were applied for classification purposes. The RF model achieved up to 95% 

classification accuracy, greatly exceeding 67.5% of iPLS- LDA. This enables 

reliable detection of orange juice adulteration. The RF model struggled to 

accurately distinguish between the “Natural” and “Mixed” categories, 

particularly for samples containing a medium proportion of natural orange juice 

(around 45–50%). The integration of voltammetric fingerprints with machine 

learning enabled a fast, cost-effective classification method for on-site analysis 

with portable sensors. This approach proved more efficient than other complex 

analytical techniques. 

Keywords: Voltammetry; machine learning; orange juice adulteration; Interval 

Partial Least Squares (iPLS); Linear Discriminant Analysis (LDA);  

1. Introduction 

In the food industry, classifying and controlling the quality of 

agricultural products, especially fruits, is essential for maintaining standards 

and protecting consumer health. Among these fruits, oranges are highly valued 

for their rich content of vitamins, fiber, and antioxidants. However, due to their 

popularity, fresh orange juice products are frequently targeted for adulteration 

with chemical flavorings [1], leading to counterfeit products [2, 3] and 

commercial fraud involving natural orange juice. Recent advancements in 

machine learning have greatly improved the processing of large datasets, 

enabling rapid chemical analysis of various products. This has enhanced 

adulteration detection and geographical indication verification with high 

sensitivity and accuracy. As a result, machine learning has become a valuable 

tool in safeguarding food integrity and ensuring the authenticity of agricultural and food products [4, 5]. To 
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identify and classify analytical samples, two basic approaches are commonly employed: i) Targeted analysis: 

This method utilizes datasets containing the concentrations of specific compounds in multiple samples. 

Certain compounds serve as markers to assess authenticity and classify products. For example, polyphenol 

content can help detect adulteration in different types of orange juice [6, 7], while flavonoid content can 

distinguish grapefruit juice from other citrus juices [8] or differentiate concentrated and non-concentrated 

orange juices with high accuracy [9]. However, targeted analysis requires high analytical costs, as managing 

multiple parameters across samples demands significant resources. ii) Non-targeted analysis: This approach 

considers the entire dataset, including all measured signals, without identifying specific compounds. 

Spectroscopic techniques such as UV-VIS, NIR [11], Raman [10], and NMR [12] have been effective in 

providing data for statistical analysis, enabling the detection and quantification of adulteration in orange and 

grapefruit juices [10]. 

Machine learning algorithms enhance classification accuracy in non-targeted analysis. Unsupervised 

methods like Principal Component Analysis (PCA), Support Vector Machines (SVM), Data-Driven SIMCA, 

and soft-PLS-DA outperform traditional PLS-DA. Additionally, algorithms such as logistic regression, PCA, 

SVM, and Artificial Neural Networks (ANN) have proven effective in handling high-dimensional and 

complex analytical data. These techniques not only aid in identifying characteristic chemical markers but also 

optimize classification through highly accurate predictive models [14, 15]. Recently, the integration of 

multivariate analysis (chemometrics) with electrochemical analysis has offered outstanding advantages, 

including high sensitivity and selectivity, rapid analysis time, effective data processing, and the ability to 

eliminate background noise [16]. This approach enables not only the simultaneous quantification of organic 

acids [17] or polyphenols [18] in fruit juices (e.g., orange, lemon, and others) but also the classification of fruits 

with an accuracy exceeding 90% [18]. 

This study aims to assess the feasibility of the voltammetric method with a gold electrode for 

analyzing natural and commercial orange juice. It focuses on different orange varieties and mixtures of natural 

and commercial juices. Data from voltammograms (current intensity vs. potential matrices) are combined with 

machine learning to develop models for classifying natural and commercial orange juice and predicting 

adulteration ratios. This approach not only enhances the accuracy of food fraud detection but also opens up 

broader application potential in the food industry.   

2.1 Reagents, Reference, and Standard Solutions 

Hydrochloric acid (HCl, 37%) was procured from Sigma Aldrich (Singapore). Methanol (Merck, 

Germany) was utilized for preparing standard solutions, while Milli-Q water used for dilutions was obtained 

from a Milli-Q water system (Merck, Germany). 

2.2 Sampling and sample preparation 

All orange samples belonged to the Citrus sinensis variety and were collected from various regions of 

Vietnam. A total of 80 samples were sourced from 8 provinces: Hoa Binh, Ha Giang, Ben Tre, Vinh Long, Nghe 

An, Bac Giang, Hung Yen, and Quang Ninh. Each fruit was cut and juiced. Additionally, 50 commercial orange 

juice samples were collected from supermarkets in Hanoi, Vietnam. These samples included bottled or canned 

juices from brands such as Mirinda, Fanta, TH, Splash. For the adulteration study, two samples of pure natural 

orange juice were mixed with commercial orange juice at nine different adulteration levels: 10%, 20%, 30%, 

40%, 50%, 60%, 70%, 80%, and 90% natural orange juice. Each adulteration level was prepared in triplicate. A 

total of 54 blended samples was synthesis. Additionally, there is one sample of difference that was mixed (the 

other orange juice sample was mixed with a commercial sample at 10, 40, 60, and 90%) and added to the data. 

The sample preparation was simple, starting with centrifugation of the juices for 10 minutes at 13,500 rpm. 

After that, a 1:4 dilution with 0.1 M HCl was performed to reach a pH of about 1.2. Each sample was prepared 

in triplicate. The samples were freshly prepared and measured immediately without storage. 

2.3 Data Acquisition 

Electrochemical measurements were conducted using the 797 VA Computrace instrument (Metrohm, 

Switzerland). This instrument, controlled by VA Computrace software, consisted of a complete measurement 

system, including a gold working electrode, an Ag/AgCl reference electrode, and a platinum auxiliary 
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electrode. For each sample, a 100 μL droplet was used as the sample volume. Differential pulse voltammetry 

(DPV) was employed to record voltammograms under the following experimental conditions: Scan range: -

0.2 V to +1.2 V (vs. Ag/AgCl); Pulse amplitude: 50 mV; Step potential: 5 mV; Scan rate: 10 mV/s. The raw data 

matrices (I-E) extracted from Voltammograms of samples under the conditions 

2.4 Data Analysis 

To perform an exploratory analysis of the data, Cluster Analysis (CA) was employed. Raw data from 

all samples were utilized, and the mean value of the three replicates for each sample was calculated and used 

in the analysis. To assess the effectiveness of the methodology, confusion matrices were generated, and 

performance metrics such as accuracy were determined. Accuracy was calculated as the ratio of correctly classified 

samples to the total number of samples, providing a clear measure of the model's classification performance. 

2.5 Methods 

2.5.1 Cosine similarity 

cos(𝜃) =  
𝑥 ∙ 𝑦

‖𝑥‖ ‖𝑦‖
 

Where x and y are vectors for which the similarity is to be computed. 

 

2.5.2 SNV 

 To standardize the spectral data, each spectrum x = (x1, x2,…,xk) is first centered by removing its mean, 

and then scaled using the standard deviation. This process results in a normalized vector z = (z1, z2,…, z k ) 

where the data have zero mean and unit variance, facilitating comparison across different spectra. 

𝑧𝑖 =  
𝑥𝑖 − 𝑥̅

√∑ (𝑥𝑖 − 𝑥̅)2/𝑘𝑘
𝑗

 

The data is standardized using the SNV (Standard Normal Variate) method to remove variations 

caused by scattering effects and correct baseline shifts. After standardization, the data is further processed 

using the Savitzky-Golay filter with a window length of 15, a polynomial order of 3, and a second derivative 

calculation. This step smooths the data, reduces noise, and enhances important spectral features for 

subsequent analysis. 

2.5.3 iPLS. 

 The data X (p features) is divided into n intervals, and a local PLS model is built for each interval to 

select the best interval. In PLS regression, similar to PCR, we aim to find components z  that are linear 

combinations of the inputs; however, unlike PCR, PLS seeks components that not only represent the predictors 

x well but also serve as strong predictors of the response 𝑦 y, under the assumption that both X and y can be 

explained by a smaller set of components Z with k < p. 

𝑋 =  𝑍𝑉𝑇 +  𝐸 

 2.5.4 Random Forest 

Random Forest is an ensemble learning method that builds multiple decision trees using bootstrap 

samples and random feature subsets at each split, which increases diversity and reduces correlation among 

trees. For regression, the final output is the average of predictions from all trees, while for classification, 

majority voting is used. 

𝑦 =  
1

𝑇
 ∑ ℎ𝑡(𝑥)

𝑇

𝑡=1

 

where ℎt is the predicted value of the t-th tree for the input x, and T is the total number of trees 
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3. Results and discussion 
3.1 Electrochemical Fingerprint of Orange Juices 

The voltammetric results of 198 orange juice samples are shown in Fig. 1 (A, B, C). The signal intensity 

(I) is clearly observed in the range of potential (V) from 0.8 to 1.2 V (versus Ag/AgCl electrode), with intensity 

of peak currents reaching a maximum between 0.04 mA and 0.6 mA. Some blended samples of natural and 

artificial orange juice exhibited lower peak maxima, ranging from 0.02 mA to 0.04 mA. However, most signals 

showed slight differences depending on the geographical origin of the samples and were quite similar to those 

of natural and commercial samples. This resemblance in peak shapes and minimal variations in peak heights 

made visual classification impractical. Even within the same category, whether natural or artificial, there were 

significant variations in peak maxima, which could introduce considerable noise into classification models. 

Therefore, signal preprocessing is essential before performing discrimination and classification. 

 

 
A 

 
B 

 
C 

Figure 1. Voltammograms of orange juice (A- natural samples; B- commercial samples, and C- blended samples) 

(sửa lại trục tung) 

 

The Standard Normal Variate (SNV) algorithm was used to normalize the data, followed by second-

order derivation and smoothing using the Savitsky-Golay algorithm. The preprocessed voltammograms are 

shown in Figure 2. These preprocessing algorithms significantly reduced background noise, including sample 

background noise and noise caused by the equipment and experimental environment. Additionally, the 

second-order derivation enhanced the signal differences between samples. These results contributed to the 

stability and objectivity of classification models, thereby improving the classification performance of the 

models. After preprocessing, the entire voltammetric dataset was randomly split into 158 samples (80%) for 

the training and 40 samples (20% remaining) for testing to perform machine learning methods. The dataset 

was first preprocessed using Standard Normal Variate (SNV) to correct for scattering effects and variations in 

sample thickness. Subsequently, the SNV-corrected spectra were smoothed and differentiated using the 

Savitzky–Golay filter with a 15-point window, a third-order polynomial, and calculation of the second 

derivative, to enhance subtle spectral features while reducing noise. 
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Figure 2. Voltammograms of orange juice after normalization using the SNV algorithm, second-order derivation, 

and smoothing with the Savitzky-Golay algorithm. 

3.2. Identification and authentication of orange juice 

Figure 3 illustrates the results of hierarchical clustering analysis (HCA) performed on the entire 

dataset of preprocessing with SNV using cosine similarity. Cosine similarity was selected as the distance 

metric for hierarchical clustering because it emphasizes the similarity of signal patterns rather than absolute 

intensity. In voltammetric data, current intensity may vary due to sample preparation, dilution, or 

instrumental noise, while the overall shape of the voltammogram remains characteristic of the sample type. 

The dendrogram shows that, even with unsupervised methods, it is possible to distinguish three data clusters: 

natural orange juice, commercial orange juice, and mixed orange juice (Table 1). 

 
Figure 3. Hierarchical clustering using cosine similarity 

 

The results indicate that 80% of the mixed juice samples belong to the first group, while 62% of the 

natural orange juice samples appear in the second group. However, in the third cluster, the distribution of 

samples across the three categories does not show a clear distinction. Thus, unsupervised algorithms reveal a 

clear difference between the blended orange juice and natural orange juice groups, providing a foundation for 

using supervised machine learning models for classification.  
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Table 1. Percentage of each sample type in each group classified. 

Sample Cluster Mixed Commercial Natural 

1 80% 16% 4% 

2 16% 22% 62% 

3 33% 27% 40% 

3.3 Supervised learning for the detection of orange juice adulteration 

After second-order derivation, the dataset showed a relatively large number of features (284 features 

obtained), requiring dimensionality reduction. Therefore, the iPLS algorithm was applied to the training 

dataset to reduce the number of features for building machine learning models. The iPLS algorithm selects the 

most relevant spectral regions with strong discriminatory power, eliminating noisy or low-information 

regions, which helps prevent overfitting and enhances model accuracy. The results of the features retained by 

the iPLS algorithm are displayed in Fig. 4. Among these, 205 features, which do not have good classification 

potential (highlighted in pink in the figure), were removed, leaving 79 features with the best potential for 

classification. The test dataset will also use these 79 features for accuracy evaluation. 

 
Figure 4. Features selected by the iPLS algorithm 

In model selection, factors such as linearity, accuracy, label differentiation (especially between natural 

and commercial juices), and performance on small datasets were considered. Typically, PLS-DA, Random 

Forest, Support Vector Machine (SVM), and Artificial Neural Network (ANN) with hyperparameter 

optimization using GridSearchCV are preferred for classification. However, both ANN and SVM initially 

achieved only 75% prediction accuracy, making them unsuitable for this study. Additionally, the small dataset 

restricted the ANN's ability to capture information, while SVM strongly misclassified between natural and 

commercial orange juices, further reducing its applicability. Therefore, this study only focuses on two models: 

iPLS-LDA and Random Forest. 

3.3.1 iPLS-LDA 

The iPLS algorithm was applied for dimensionality reduction using a 158×79 training dataset, 

consisting of 158 samples classified into three groups (natural, commercial, and blended orange juice) with 79 

features extracted from the raw data. An LDA model was then built to classify these groups, but some blended 

orange juice samples were misclassified as either natural or commercial juice. Linear separation was not 

achieved due to overlap between the natural and blended orange juice groups. A deeper evaluation of the 

percentage of natural orange juice in the samples is shown in Fig.5, with the sample colors gradually 

transitioning from white to dark, representing an increasing proportion of natural orange juice. The triangle 

markers represent samples from the training dataset, while the circular markers represent samples from the 
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test dataset. The results indicate that the LDA model struggles to differentiate between natural and blended 

samples. This suggests that the compounds in natural orange juice may be masking the signals, making 

classification more challenging. 

 

 
A 

 
B 

Figure 5. LDA plot of training dataset and test dataset projected onto LDA model space according to: A- 

corresponding labels and B- the proportion of natural orange juice in each sample. 

Based on Fig. 5A, it can be observed that when the training and testing datasets are projected onto the 

LDA space according to their corresponding labels, there is a significant overlap between the clusters of the 

"Mixed" and "Commercial" labels. This explains why certain samples are misclassified into the "Mixed" group. 

This phenomenon reflects the characteristic similarity between commercial and mixed juice samples, 

especially when the proportion of natural orange juice in these products fluctuates, making it challenging for 

the model to distinguish between them. Additionally, Fig. 5B provides further insights as the samples are 

projected onto the LDA space based on the proportion of natural orange juice. It reveals that samples with 

natural orange juice proportions near the threshold between "Mixed" and "Natural" or "Commercial" are prone 

to misclassification. Moreover, this issue may stem from the insufficiently strong boundaries between clusters 

in the LDA space, which fail to fully capture the differences in natural orange juice proportions among the groups. 

3.3.2 iPLS- RF 

Using the test dataset, the iPLS-RF model achieved 95% classification accuracy, demonstrating a 

significant improvement over the LDA algorithm (67.5%) (Fig. 6). Based on the iPLS-RF model, only one natural 

sample was misclassified as a blended one, and one blended sample was predicted as a natural one. No confusion 

occurred between the blended and commercial groups, highlighting the superior potential of the RF algorithm 

and, more broadly, ensemble learning methods in classifying objects based on selected spectral features.  
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A 

 
B 

Figure 6. Confusion matrix of: A- LDA model on the test dataset, and B- Random Forest model on the test dataset 

The Random Forest model also struggled to accurately distinguish between the "Natural" and "Mixed" 

categories, especially for samples with a medium proportion of natural orange juice (around 45-50%). This 

issue may stem from the inadequacy of the data features to effectively separate these two categories within 

the feature space. 

 
Figure 7. The second-order derivative signals vs. features of the samples classified by iPLS-LDA (red lines: 

misclassification samples; blue line: correct classification samples) 

 

To check the reasons why iPLS-DA gave the low accuracy prediction, the second-order derivative 

signals of the misclassified samples (red lines) compared to the correctly classified samples (blue lines) were 

shown in Fig. 7. It can be observed that the shape of the second derivative data across features differs between 

correctly classified and misclassified samples. Misclassified samples exhibit abnormalities such as missing 

peak points and flattened or unchanged signals. These irregularities are also associated with outliers at peak 

or shoulder points in the voltammogram. This suggests that samples with abnormal shapes compared to the 

overall dataset within the same group should be identified and excluded before processing. Compared with 

previously reported classification results, our machine learning model achieved higher accuracy. The 

limitation of working on a single device is that accurate results can only be obtained for experiments conducted 

on that same device. However, when switching to another device, it is necessary to calibrate the measurement 

signals and ensure similar operating conditions to the original device to maintain accuracy. 
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4. Conclusion 

The feasibility of using voltammetric data combined with machine learning as a screening method for 

determining the authenticity of juice was confirmed. Cluster analysis revealed the differences between natural 

orange juice, chemical-based juices, and blends of natural and chemical juices. Based on this, supervised 

machine learning models such as iPLS-LDA and random forest were developed for classification purposes, 

with the random forest model showing promising results in classification and prediction. The obtained results 

also highlight the usefulness of the voltammetric method using a gold electrode to assess the authenticity of 

orange juice. The limitations of the sample recognition method were addressed by increasing the sample size 

and creating stronger models. Moreover, the electrochemical approach has shown that it is capable of fast 

classification, low cost, and suitability for on-site analysis. This approach would enable the monitoring of raw 

material procurement concerning the orange variety and growing regions. 
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