
Research article
 

 Research article  

 

 

ASEAN J. Sci. Tech. Report. 2026, 29(1), e260159. https://doi.org/10.55164/ajstr.v29i1.260159 

Predicting E-Commerce Purchase Intention Using Machine 

Learning 

Om Ratna Sheshagiri Gupta Alamuri1*, and Chaitanya Krishna Bondalapu1  

1 Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India  

* Correspondence: alamurigupta129@gmail.com 

Abstract: The fast-evolving digital commerce environment demands precise 

predictions of consumer buying intentions to develop personalized experiences 

and boost conversion rates and user satisfaction on e-commerce platforms. The 

field has extensively utilized traditional statistical models in conjunction with 

behavioral theories; however, these methods fail to adapt to high-dimensional, 

imbalanced session-level data. This learning proposes a machine learning-based 

approach to predict online purchase intention using the widely recognized 

Online Shoppers Intention dataset. The methodology involves a reproducible 

pipeline that integrates data preprocessing, the synthetic minority over-

sampling technique (SMOTE) to address class imbalance, chi–square–based 

feature selection, and a comparative evaluation of multiple classification models. 

The pipeline was tested on a 70:30 train-test split using stratified sampling to 

maintain class distribution, and further validated through 10-fold cross-

validation to enhance robustness. The Support Vector Classifier (SVC) was 

found to be the best model in terms of both ROC-AUC and F1 score, achieving 

an ROC-AUC of 0.886 and an F1 Score of 0.633, thereby efficiently discriminating 

between purchase and non-purchase sessions. We also explore Random Forest, 

Decision Tree, and Ridge Classifier models to support a more holistic 

understanding of performance across a variety of complexity and 

interpretability levels. Importantly, the research also uncovers important 

behavioral predictors, including product-page engagement and whether the 

visitor is a returning one, providing interpretable insights that are consistent 

with real-world e-commerce practices. These results suggest the potential for 

implementing machine learning models for real-time behavior forecasting in 

online retail contexts and show that a data-driven pipeline can add value to 

traditional behavioral modeling counterparts. 

Keywords: Customer purchase intention; e-commerce analysis; ML pipeline; 

SMOTE; chi-square test. 

1. Introduction 
The growing dominance of e-commerce has transformed consumer 

interactions with products and services, as digital platforms now serve as the 

primary channel for retail transactions. Online shopping environments have 

become increasingly competitive, so businesses now focus on both user 

acquisition and converting website visitors into buyers. The ability to 

understand and predict consumer purchase intentions stands as a vital factor for 

enhancing user experiences, promoting targeted advertising, and optimizing 

conversion rates. Numerous research studies have examined the psychological 
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and behavioral factors that influence online purchasing decisions. The Theory of Planned Behavior (TPB) [11], 

the Technology Acceptance Model (TAM) [2], and the Stimulus-Organism-Response (SOR) theory [1] are 

primarily used frameworks to analyze customer decisions, focusing on the analysis of perceived trust, 

enjoyment, and social influence [4]. The research demonstrates that e-service quality [13], along with live-

streaming interactivity [10], gamification [4], and real-time engagement [14], play crucial roles in customer 

intention. The approaches deliver essential insights into consumer behavior but depend on survey-based 

models and self-reported data, which may not work effectively in real-time decision environments. 

E-commerce data faces structural challenges as one of its primary difficulties. The recording of 

customer interactions through clickstream events generates high-dimensional, noisy data that exhibits severe 

class imbalance, as actual purchases occur in only a small fraction of sessions [6,3]. The existing research on 

customer segmentation and loyalty prediction using machine learning models [7,8] requires further 

development of end-to-end predictive pipelines that integrate feature engineering with imbalance correction 

and model evaluation within a reproducible framework. This paper discloses these gaps by developing a 

machine learning-based model to predict online purchase intention using session-level data from the Online 

Shoppers Intention dataset. The proposed pipeline combines SMOTE for handling class imbalance with 

SelectKBest using chi-square scoring for feature selection, and multiple classification models, including 

Support Vector Classifier (SVC), Random Forest, Ridge Classifier, and others. The research aims to discover 

the optimal combination of preprocessing methods and classification approaches that produce accurate, 

interpretable, and scalable purchase predictions. 

2. Materials and Methods 
The project introduces a comprehensive and reproducible machine learning pipeline for predicting 

online purchase intention using clickstream data. The pipeline addresses significant issues in current methods 

for handling class imbalance and high dimensionality, while generating interpretable results. The initial stage 

of the process involves data preprocessing, which utilizes ordinal and binary encoding for the categorical 

variables VisitorType and Month. Boolean fields, such as Weekend and Revenue, are converted into binary 

integers. Additionally, missing and infinite values are handled using imputation to ensure data quality. Next, 

we implement advanced feature engineering by introducing six behavioral indicators—Total Duration, Total 

Page Visits, Average Page Duration, Product View Ratio, Information View Ratio, and Returning Visitor—

which encapsulate user engagement and browsing behavior. After feature scaling with MinMax 

normalization, the pipeline applies SMOTE to create synthetic samples of the minority class, thereby 

addressing class imbalance without compromising data integrity [6,12]. The feature selection process is 

implemented using the chi-square SelectKBest method to retain the most statistically significant predictors 

[5,11]. Classifiers are verified by using 10-fold cross-validation. This method is in concordance with prior 

studies that have compared classifier performance based on the performance in behavior prediction tasks 

[8,10]. The best performance model is selected for final evaluation on an independent test set. This 

methodology enhances predictive performance and interpretability by utilizing visualization tools, such as 

ROC curves and feature importance analysis. The ML pipeline is modular and reproducible, and can be used 

for both academic research and practical deployment into e-commerce real-time systems [12]. 

2.1 Process Flow 

The proposed machine learning pipeline [12] implements a structured, modular framework to achieve 

consistency and reproducibility, delivering high predictive performance. The initial stage of data cleaning 

addresses missing values, inconsistent data types, and infinite values by implementing imputation and 

replacement methods. Boolean variables (Weekend, Revenue) are converted into binary format, and 

categorical variables (Month, VisitorType) are encoded appropriately for modeling. Next, feature engineering 

is applied to create new behavioral indicators, such as Total Duration, Average Page Duration, and Product 

View Ratio, which capture more profound insights into user browsing patterns. This is followed by class 

imbalance handling using the Synthetic Minority Oversampling Technique (SMOTE) [6,12], which balances 

the dataset by generating synthetic examples of minority class sessions. Subsequently, the step involves 
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applying chi-square ranking to select statistically significant predictors, which helps decrease dimensionality 

and enhance interpretability. The imbpipeline contains all preprocessing steps, alongside balancing and 

selection functions, which maintain uniform application throughout the training and testing phases. The 

validation process for machine learning models includes cross-validation and evaluation methods for 

comparison. The effectively performing model is selected for future analysis and interpretation, providing 

actionable insights for real-world e-commerce personalization strategies. 
 

 

Figure 1. Process flow 

2.2 Dataset Description 

The dataset used in this paper is the publicly available Online Shoppers Intention Dataset [17], 

comprising 12,330 records, each representing a complete web browsing session on an e-commerce platform. 

The dataset contains 18 features, including the number of administrative pages visited, informational pages 

accessed (Informational), and the corresponding time (Informational_Duration). Additionally, it includes 

product-related features that typically reflect purchase intention more directly. The session-level engagement 

becomes visible through behavioral metrics, which include Bounce Rates (percentage of single-page visits), 

Exit Rates (percentage of users exiting from a given page), Page Values (estimated monetary value of visited 

pages), and Special Days (a score indicating proximity to a special date, such as holidays or sales events). 

Technical attributes include session information such as the Month, Operating Systems used, Browser type, 

Region of the user, and Traffic Type, which indicates the source of the web traffic. The visitor information 

section includes VisitorType, which identifies whether the user is new or returning, and a Boolean field, 

Weekend, to denote whether the session occurred on a weekend. The output variable “Revenue” is a Boolean 

indicating whether a purchase was made, and serves as the label for supervised learning. 
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Table 1. Features Description 

2.3 Data Cleaning 

The first step involved data preparation of the Online Shoppers Intention dataset prior to analysis. 

The Weekend and Revenue boolean columns received binary integer transformations (0 or 1) while 

VisitorType received encoding for categorical fields. The feature engineering process required division 

operation value replacement with zero and constant-value imputation for handling missing data. The dataset 

was made free from inconsistencies, null values, and unprocessable formats through these steps, as these 

issues commonly cause machine learning model failures and bias. The standardized format created during 

this phase enabled a seamless transition to advanced processing stages, including feature engineering, 

modeling, and evaluation. The cleaning process prevented data-related errors from being passed through to 

subsequent transformations and predictions, which would have compromised the overall reliability of the 

predictive system. 

2.4 Feature Engineering 

Here, we conducted extensive feature engineering to enhance model interpretability and gain a deeper 

understanding of user behaviors. The existing attributes received six new behavioral indicators, which 

included Total_Duration (the aggregate time spent across all page types), Total_Page_Visits (the total number 

of pages visited during a session), Avg_Page_Duration (the average time per page), ProductView_Ratio, 

InfoView_Ratio, and Returning_Visitor (a binary indicator of repeat visits). 

Feature Description 

Administrative Number of administrative pages visited 

Administrative_Duration Total time (in seconds) spent on administrative pages 

Informational Number of informational pages visited 

Informational_Duration Total time spent on informational pages 

ProductRelated Number of product-related pages visited 

ProductRelated_Duration Total time spent on product-related pages 

BounceRates Average bounce rate of pages visited 

ExitRates Average exit rate of pages visited 

PageValues Average page value of pages visited 

SpecialDay Closeness of session date to a special day (0 to 1) 

Month Month of the visit (January–December, encoded) 

OperatingSystems The operating system used by the visitor 

Browser Web browser used by the visitor 

Region Visitor’s geographic region 

TrafficType Source of traffic (e.g., direct, referral, ads) 

Weekend Whether the session was on a weekend (0 = No, 1 = Yes) 

Visitor Type Type of visitor: Returning Visitor, New Visitor, or Other 

Revenue Whether the session ended in a purchase (0 = No, 1 = Yes) 
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Total_Duration =  Admimistrative_Duration + Informational_Duration + ProductRelated_Duration (1) 

Total_Page_Visits =  Administrative +  Informational + ProductRelated (2) 

 

Avg_Page_Duration =
Total_Duration

Total_Page_Visits
 

 

(3) 

 

ProductView_Ratio =
ProductRelated

Total_Page_Visits
 

 

(4) 

 

InfoView_Ratio =
Informational

Total_Page_Visits
 

 

(5) 

The Month column was ordinally encoded to reflect potential seasonal effects. The new features were 

designed to detect user engagement and navigation patterns that affect online purchasing decisions. The 

feature engineering process both increased the dataset size and improved the ability of machine learning 

models to differentiate between browsing and purchase-intent sessions. The transformations converted 

intricate user interactions into organized variables, which enhanced both the model's precision and the 

business value of the extracted knowledge. 

2.4.1 Weekend & Revenue Column 

The preprocessing phase involved converting the Boolean features 'Weekend' and 'Revenue' from 

the dataset into a numerical binary format to make them suitable for machine learning algorithms. The initial 

Boolean values (True, False) in the features needed conversion because most machine learning models require 

numerical data. The Python replace () method converted True to ‘1’ and False to ‘0’ to solve this issue. The 

model could understand these features as binary indicators through this transformation because it maintained 

their semantic meaning while matching the numerical requirements of the feature space. The conversion 

process prevents type incompatibility problems during model training and enables algorithms to detect the 

predictive value of binary variables in purchase intention outcomes. 

 

 
  

Figure 2. Boolean to Binary Conversion 

  

2.4.2 Visitor_Type Column 

The dataset includes a VisitorType column that has a categorical value indicating whether the 

visitor is a false visitor or a true visitor. A Returning Visitor or a New Visitor started the session. The two 

groups are mutually exclusive; therefore, there is no overlap, and it is redundant to use both for predictive 

modeling. Thus, we created a new column, Returning_Visitor, containing the value ‘1’ if the session was from 

a return visitor and '0’ otherwise. This was achieved by storing the data in a new column in the dataframe, 

minimizing its categorical complexity while preserving the fundamental behavioral difference between repeat 

and first-time visitors. Writing this variable with a binary coding guarantees that machine learning models 

can easily understand it. 
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Figure 3. Adding Returning_Visitor 

  

2.4.3 Month Column 

The dataset contains a 'Month' column that shows the calendar month in which each session 

occurred. The Month column exists as an object (string) data type by default, which prevents direct processing. 

The conversion of categorical data into numerical data using Ordinal Encoding, which assigns integer values 

to each category based on its sequential order. The months received integer values from 0 to 11 through the 

encoding process, which maintained their chronological order. The sequential nature of ordinal categorical 

variables makes Ordinal Encoding the better choice than one-hot encoding for nominal categories without 

inherent ranking. The application of Ordinal Encoding to the Month column maintains sequential relationships 

between categories, which helps machine learning models detect seasonal patterns and time-based trends that 

affect purchase intention, while reducing dimensionality compared to one-hot encoding [11-12]. 
 

2.4.4 Target Column 

The Revenue column serves as the target variable to determine if users completed purchases 

during their sessions. The default representation of this column uses Boolean values, which indicate True for 

purchases and False for non-purchases. The majority of machine learning models require numerical 

representations of targets to perform classification tasks. The replace() method converted the Revenue column 

into binary format by establishing the following mapping: 

True → 1, False → 0 

The transformation preserves the original meaning of the data while converting it into a format 

suitable for supervised learning models. The binary target enables us to define the problem as a binary 

classification task, which aims to predict whether a session belongs to the positive class (Revenue = 1) or the 

negative class (Revenue = 0). The model requires this preprocessing step to correctly interpret labels and 

achieve optimal accuracy, precision, recall, and ROC-AUC performance metrics. 

 

Figure 4. Revenue column values count 

2.5 Pearson Correlation 

 The Pearson correlation coefficient finds the relationship between numerical features and the target 

variable. The Pearson correlation coefficient measures linear relationships between continuous variables by 

using its r value, which ranges from -1 to 1. The correlation values r = 1, r = -1, and r = 0 indicate a perfect 

positive linear relationship, a perfect negative linear relationship, and no linear relationship, respectively. 

 

𝒓 =
 ∑  (𝐗𝐢  −  𝐗)̅̅ ̅̅ (𝐘𝐢 − 𝐘)̅̅ ̅𝐧

𝐢=𝟏

√ ∑  (𝐗𝐢 − 𝐗)̅̅ ̅𝟐𝐧
𝐢 = 𝟏 √ ∑  (𝐘𝐢  −  𝐘)̅̅ ̅𝟐𝐧

𝐢 = 𝟏

 

 

 

 

 

(6) 

The complete correlation matrix was visualized through a heatmap, which displayed the strength and 

direction of feature correlations using cell color intensity. The heatmap enabled us to identify strong 

correlations between features while helping us evaluate potential multicollinearity. A horizontal bar chart 
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displayed the correlation coefficients between Revenue and each feature in descending order of magnitude. 

The visualization demonstrated that ProductRelated, PageValues, and BounceRates were the most important 

predictors of purchase intention, while showing that other attributes had weaker effects. The graphical 

analyses provided straightforward insights about feature importance, which directed our subsequent feature 

selection and modeling work. 

 
Figure 5. (Bar Plot) Pearson Correlation Coefficient 

 

Figure 6. Correlation Matrix Heatmap 
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2.6 Training & Test Data 

The dataset was prepared for supervised machine learning, with the input features (X) and target 

variable (y). The features of the input were all related variables obtained either by preprocessing or feature 

engineering. These attributes were related to user actions, session properties, and technical attributes of 

browsing behavior. The dependent variable was based on the Revenue attribute, indicating whether the user 

session resulted in a transaction (1) or not (0). A training and testing dataset was then prepared for model 

development and validation. Dividing the dataset by using the function train_test_split () of the scikit-learn 

library, where the training and testing sets of the data were split in the ratio 70:30 (70% training, 30% testing). 

The model trains on a wide range of data through this splitting method while evaluating its performance on 

an independent subset. Additionally, stratified randomization (stratify=y) was employed to preserve the 

original class distribution (purchase vs. non-purchase) in both training and testing subsets, thereby preventing 

skew in class proportions. A constant random state (i.e., 0) was used to ensure the same data partitioning was 

applied across replicates. This guarantees reproducibility of the findings. This type of splitting allows the 

model to train on a wide range of the data, while still evaluating it on an entirely independent subset. The 

70:30 split was chosen because it offers an optimal balance between providing sufficient data for training 

complex models while maintaining a large enough independent test set to yield statistically reliable 

performance estimates. The training set included 8,631 sessions, consisting of 7,295 non-purchase and 1,336 

purchase cases. The testing set contained 3,699 sessions, with 3,127 non-purchase and 572 purchase cases. 

2.7 Machine Learning Pipeline 

The machine learning pipeline utilizes ColumnTransformer and imblearn—pipeline to construct a 

consistent and reproducible modeling process. The pipeline consisted of five stages, which included 

imputation, followed by MinMax scaling, then SMOTE oversampling, chi-square-based feature selection, and 

finally a classifier. The pipeline structure contained all preprocessing steps, which were applied to both 

training and testing sets to prevent data leaks. The pipeline design included flexible components to enable 

easy substitution and evaluation of different classifiers. The pipeline design supported hyperparameter tuning 

and cross-validation operations with automatic reprocessing capabilities. The system design adhered to best 

practices for machine learning development and deployment, optimizing the entire training and evaluation 

process for real-world e-commerce implementation. A Machine Learning pipeline workflow is automated that 

handles a complete processing task. The process combines data transformation with correlation steps into a 

model structure for output analysis. A standard pipeline consists of raw data input, features, outputs, model 

parameters, ML models, and Predictions. The pipeline is built with consecutive steps that execute data 

extraction and pre-processing, as well as model training and deployment, in a modular way for Machine 

learning. We developed a model pipeline for our project, which employs the ColumnTransformer() to handle 

data encoding. This replaces any absent values with possible values. It normalizes the data before we input it 

into the model.  

2.7.1 SMOTE 

The imbalance of classes is a drawback in this dataset, as only about 15.5% of the sessions were 

purchase sessions. This class imbalance has the potential to make the model biased towards the minority class, 

which is less prone to valuable patterns for minorities. To address this, we used the Synthetic Minority 

Oversampling Technique (SMOTE) instead of simple random oversampling, as SMOTE generates synthetic 

samples within the feature space rather than merely duplicating minority class samples. This reduces the risk 

of overfitting in the class imbalance problem. Data balancing SMOTE creates new artificial purchase examples 

for the minority class by interpolating between existing purchase examples, thereby rebalancing the class 

distribution without replicating data [6,12]. By doing SMOTE in the normalized feature space, the synthetic 

samples are realistic and well-mingled. This led to a significant improvement in model performance, 

particularly in learning from minority purchase sessions, resulting in increased recall and F1-score for the 

minority class. It also served as a solution to circumvent overfitting to the majority class, a pitfall often 

associated with straightforward oversampling or underweighting approaches [8]. Alternative methods, such 
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as ADASYN or Random Oversampling, were considered, but we chose SMOTE for its balance between 

simplicity and robustness, as supported by previous e-commerce prediction studies. 

 
Figure 7. Class Distribution 

2.7.2 Imbpipeline 

The study utilizes the imbalanced-learn package's imbalanced pipeline module [16] to achieve a 

robust and reproducible machine learning workflow. The imbalanced pipeline class in scikit-learn extends the 

standard Pipeline class by integrating checking approaches into its pipeline structure for handling class-

imbalanced datasets.  

The imbalanced pipeline differs from typical pipelines because it enables the addition of checking 

techniques, including the Synthetic Minority Oversampling Technique (SMOTE), within each cross-validation 

fold. The design of this approach restricts oversampling to the training data during model evaluation, thereby 

precluding data leakage into the test set and maintaining genuine performance criteria.  

The imbpipeline receives the following factors during its methodical configuration.  

• Preprocessing: Imputation, scaling, and encoding 

• Resampling: SMOTE for balancing minority-class samples 

• Feature selection: Chi-square–based SelectKBest 

• Classifier: Various models (e.g., SVC, Random Forest, Naïve Bayes) 

The modular and scalable channel frame promotes thickness across experimental setups. The 

frame ensures that everything, from preprocessing to final evaluation, will be executed identically. The frame 

enables unprejudiced model comparisons between different classifiers while enhancing real-world model 

conception capabilities. 

2.7.3 SelectKBest 

The SelectKBest algorithm functions as a univariate feature selection method from the scikit-learn 

library. The algorithm selects the top k labels from the dataset through statistical tests that evaluate the 

strength of the relationship between each feature and the target variable. The project utilized the ANOVA F-

test (f_classif) as the scoring function because the target variable is categorical. In this project, the ANOVA F-

test (f_classif) was used as the scoring function, as the target variable is categorical. The F-test measures the 

strength of association between each feature and the target class by comparing the variance between groups 

with the variance within groups. SelectKBest was applied after preliminary correlation filtering to reduce 

feature dimensionality, improve model performance, and prevent overfitting. We used chi-square–based 
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SelectKBest for final feature ranking and retained the top 6 statistically significant features. By retaining only 

the top-ranked features, the model was trained on the most statistically significant predictors, including 

PageValues, ExitRates, ProductRelated_Duration, Returning_Visitor, BounceRates, and Total_Duration. 

For dimensionality reduction, we employed the Chi-Square (χ²) statistical test because most input 

variables are categorical or non-negative numerical counts (e.g., page visits, durations). Chi-Square effectively 

measures the independence between each feature and the target variable (Revenue), making it suitable for 

classification tasks. While methods like mutual information gain or recursive feature elimination (RFE) could 

also be used, χ² was preferred because it is computationally efficient and interpretable, ensuring that only the 

most statistically significant predictors (e.g., PageValues, ExitRates) are retained. 

 

ANOVA F-test to select the top k features: 

 

F =
Variance between groups

Variance within groups
 

(7) 

 

2.8 Select_model 

To select the best model, we created a single function that automatically tests all models and finally 

returns the best model as per our requirements. It is possible to loop over those models and then apply the 

data through the pipeline for each model. Using cross-validation to get the best performance, reliability, and 

accuracy of each model. Save the model results to a pandas DataFrame and see the outcome. Finally, select the 

optimal model having the maximum ROC/AUC score.select_model(X, y, pipeline = None) is a user defined 

function. This function takes 2 non-default parameters and 1 default parameter: 

• X (object): Dataframe containing X_train data  

• y (object): Dataframe containing y_train data 

• pipeline: Pipeline from model_pipeline() 

2.9 Models Evaluated 

We evaluated a diverse set of machine learning classifiers within the proposed pipeline, integrating 

oversampling, feature selection, and classification to identify the approach that best balances accuracy, 

robustness, and interpretability for real-time e-commerce personalization. 

Support Vector Classifier (SVC): 

The core prediction engine is an SVC with an RBF (Radial Basis Function) kernel. It identifies the 

optimal hyperplane that maximizes the margin between classes in a transformed feature space, making them 

well-suited for high-dimensional problems. We enabled probability estimates (probability=True) to facilitate 

threshold tuning and business-driven decision-making. The RBF kernel was specifically chosen because it 

effectively handles non-linear relationships in the data [8]. 

Random Forest (RF) Classifier: 

This algorithm is a collaborative method that constructs several decision trees on bootstrapped 

samples and combines their outputs for classification. Its inherent feature bagging reduces variance and often 

yields strong baseline performance on clickstream tasks. We included it as a benchmark against a robust, non-

linear learner. In this, the Random Forest was configured with 100 trees (n_estimators=100), ensuring 

performance stability [6]. 

Bernoulli Naïve Bayes: 

The BernoulliNB classifier models binary features under the assumption of conditional independence. 

Despite its simplicity, it can perform surprisingly well on sparse or binarized clickstream data [5] and serves 

as a lightweight baseline in our comparisons. 

Ridge Classifier: 

The Ridge Classifier uses L2-regularized linear regression for classification tasks by thresholding the  
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continuous outputs. The L2 penalty controls model complexity [11] and mitigates overfitting, making it 

particularly useful in high-dimensional feature spaces. The model was applied with its default regularization 

strength (α = 1.0). 

K-Nearest Neighbors (KNN): 

KNN predicts a session’s class by considering the majority class label among its k neighbors in the 

feature space. It requires no explicit training phase, making it a practical nonparametric comparator [7], though 

its performance can degrade in high-dimensional settings. Using the default k = 5 leads to a good balance 

between bias and variance. 

Decision Tree Classifier: 

The Decision Tree Classifier recursively partitions the feature space to construct a tree of decision 

rules. Its intuitive, rule-based structure offers clear interpretability, but single trees are prone to overfitting 

[12], making it valuable for illustrating the trade-off between simplicity and predictive power. The model was 

implemented using the Gini index as the criterion for splitting. 

2.10 Evaluation Metrics 

To comprehensively measure model performance, we employed a set of well-established evaluation 

metrics, particularly suited for imbalanced binary classification tasks, such as purchase intention prediction. 

Accuracy 

Accuracy calculates the overall proportion of rightly classified cases (both purchase and non-

purchase). While useful, accuracy alone can be misleading in imbalanced datasets because high accuracy may 

be affected by prognosticating only the dominant class. 

 

Auc =
T_P + T_N

F_P + F_N ∗ T_P + T_N
 

 

(8) 

where T_P = true positives, T_N = true negatives, F_P = false positives, and F_N = false negatives 

 

Precision 

Precision quantifies the part of predicted positive cases (purchases) that are actually correct. High 

precision diminishes the possibility of false positives, which is vital when targeting marketing resources. 

 

Precision =
T_P

T_P + F_P
 

 

(9) 

 

Recall 

Recall measures the part of actual positive cases (purchases) that the model successfully identifies. 

More recall is critical to ensure that most potential purchasers are correctly flagged, even if it means incurring 

some false alarms. 

 

Recall =
T_P

T_P + F_N
 

 

(10) 

 

F1 Score  

F1 measures the harmonic mean of precision and recall, which allows a balanced assessment when 

both false positives and false negatives are important. It is especially enlightening in unbalanced datasets.  

 

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
 (11) 
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ROC-AUC (Receiver Operating Characteristic – Area Under the Curve)  

ROC-AUC estimates the model's capability to differentiate among classes at various decision 

thresholds. It calculates the area under the ROC curve, which plots the true positive rate (TPR) against the 

false positive rate (FPR) at various threshold levels.  

 

AUC =  ∫ TPR(FPR)dFPR
1

0

 (12) 

 

By combining these metrics, we gained a nuanced understanding of each model’s strengths and weaknesses, 

particularly in relation to the minority (purchase) class, which is the key target for actionable e-commerce 

insights. 

3. Results and Discussion 
3.1 Model Evaluation and Comparative Performance 

This pipeline was applied to six classifiers (SVC, Random Forest, Decision Tree, Ridge Classifier, 

Bernoulli Naïve Bayes, and KNN) to obtain a better model for online purchase intention prediction. Among 

those, SVC was the most robust model with the highest ROC-AUC (0.886) and F1-score (0.633), indicating its 

reasonable and balanced discrimination and good performance in balancing the imbalanced data. The 

Random Forest model came second, with a good ROC-AUC score of 0.882, while Decision Tree, Ridge 

Classifier, BernoulliNB, and KNN performed in the middle and served as reasonable comparisons. The 

performance of the models was evaluated using five performance metrics: accuracy, precision, recall, F1-score, 

and ROC-AUC. These collectively presented an equanimous understanding of predictivity, particularly in 

imbalanced binary classifications. Support Vector Classification achieves the highest accuracy (88.3%) and 

ROC-AUC (0.886) for the task of distinguishing between purchase and non-purchase sessions. It also showed 

a balanced trade-off between minimizing false positives and capturing true purchase signals with an F1-score 

of 0.633. Random Forest and Decision Tree worked stably on non-linear patterns, while Ridge, Naïve Bayes, 

and KNN models performed similarly, as they had a limited ability to capture the minority class. 

Table 2. Performance comparison of all classifiers 

Classifier ROC-AUC Accuracy Precision Recall F1-Score 

SVC(RBF) 0.886 0.883 0.619 0.654 0.633 

Random Forest 0.882 0.872 0.567 0.739 0.641 

BenouliNB 0.852 0.872 0.561 0.810 0.663 

KNN 0.836 0.853 0.520 0.696 0.594 

Decision Tree 0.727 0.852 0.520 0.585 0.550 

Ridge Classifier 0.851 0.819 0.449 0.700 0.546 
1SVC - Support Vector Classifier, 2RBF - Radial Basis Function, 3KNN - K-Nearest Neighbors 

 

SVC has the capacity to represent non-linear decision boundaries and exhibits robustness in high-

dimensional feature spaces, facilitating generalization across a variety of sessions. Consequently, it was the 

most dependable model in predicting online purchase intentions. In contrast, the Random Forest (RF) classifier 

demonstrated high recall capabilities due to its ensemble learning method of aggregating multiple decision 

trees. This features a trade-off; although RF could handle a greater number of positive purchase cases, 

precision was sacrificed, resulting in more false positives (FP). Therefore, we consider RF to be a beneficial 

alternative model in cases where recall is more important than precision (e.g., maximizing potential buyer 

discovery in target marketing). The Bernoulli Naïve Bayes (BernoulliNB) classifier with the maximum recall 

(0.81) further demonstrates its ability to handle binary-like session information. However, due to the 

independence assumption, a sharp decrease in the precision value was observed as well as a significant 

deterioration in the overall F1-score (95%), which hindered its usefulness as an individual predictive predictor. 

Other classifiers, such as Decision Tree, Ridge Classifier, and K-Nearest Neighbor (KNN) appear to be worse. 
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Decision Trees overfitted, Ridge Classifier was limited by its linearity, and KNN failed under high-

dimensionality (the curse of dimensionality). These results further highlight the importance of being able to 

learn non-linear patterns. Altogether, results show SVC performs the best on average according to the tradeoff 

of accuracy, ROC-AUC, and F1-score, so that it is the optimal choice for prediction. 

3.2 Feature Relevance and Interpretability 

Feature importance analysis, conducted using the chi-square test and Pearson correlation, revealed 

that PageValues, ProductRelated, and ExitRates were the most significant predictors of purchase behavior. 

This aligns with behavioral theories and past literature [11, 7], emphasizing that high product page 

engagement and exit patterns near checkout stages are strong indicators of purchase intent. Visual heatmaps 

and bar plots confirmed the statistical significance of these features in distinguishing between buyer sessions 

and non-buyers, validating the design of the feature engineering process. Figure 8 presents the chi–square–

based feature importance rankings, where behavioral features, such as Returning_Visitor, PageValues, and 

ProductRelated_Duration, consistently ranked highest. 

 

Figure 8. Feature importance (chi-square ranking) 

3.3 Visual Evaluation of Model Outputs 

To support quantitative metrics, Figure 9 displays ROC curves for all classifiers, providing a visual 

interpretation of each model’s ability to trade off true positive and false positive rates over various thresholds. 

Figure 10 illustrates the confusion matrices, showing classification accuracy and class-specific errors for both 

majority and minority classes. These visuals confirm the SVC’s superior discrimination, as well as the relative 

assets and faintness of the remaining models. 
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Figure 9. Roc Curve Comparison 

 
Figure 10. Confusion Matrix 

3.4 Insights into User Behavior 

Model interpretation revealed that returning visitors had a higher likelihood of completing purchases, 

particularly during weekends and near special days. Sessions characterized by greater product interaction 

time (Total_Duration), lower bounce rates, and higher PageValues were more likely to convert. These insights 

corroborate findings from prior studies in live-streaming and gamified commerce platforms [1, 10], where user 

attention and engagement depth emerged as key purchase drivers. 

3.5 Implications and Strategic Value 

The pipeline is useful in real-time marketing and personalization for e-commerce operations. The 

platform enables businesses to concentrate on purchase-intent sessions and serve personalized offers and 

optimal product display sequences based on predictive behavior modeling. The modularity of the pipeline 
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enables businesses to implement it on other platforms with minimal modifications, resulting in higher 

scalability and practical applicability. 

3.6 Comparative Analysis with Existing Studies 

The Support Vector Classifier (SVC) performs best for online purchase intention prediction, with an 

F1-score of 0.633 and an ROC-AUC of 0.886. The results align with earlier research, which suggests that SVM-

based models outperform linear classifiers because they can detect non-linear patterns in large e-commerce 

datasets [5], [8]. These research findings gain additional strength through the comparison with earlier studies. 

The predictive accuracy of Logistic Regression and Decision Trees was lower than that of the current study 

because these models failed to detect non-linear patterns in the data [3]. The results align with our findings, 

as Decision Trees yielded lower F1-scores due to overfitting. The research conducted by [7] analyzed Naïve 

Bayes for purchase prediction because this model performs well with sparse binary data. The results confirm 

that BernoulliNB produced the best recall at 0.81; however, its precision remained low, which restricted the 

overall performance. Recent research has focused on developing ensemble approaches and deep learning 

algorithms. The purchaser detection results from Random Forest and Gradient Boosting showed improved 

recall rates [12], which aligns with our findings that Random Forest outperformed SVC in recall, but SVC 

maintained better F1 and ROC-AUC scores. The sequential data analysis capabilities of deep learning models, 

such as LSTMs, in clickstream data [14], come at a high computational expense that makes them impractical 

for real-time prediction compared to SVC. The evidence shows that non-linear learners (SVC and Random 

Forest) perform better than linear approaches in purchase intention prediction, but their performance depends 

on the characteristics of the dataset and the effectiveness of feature engineering and balancing techniques like 

SMOTE. 

3.7 Limitations and Future Directions 

The proposed machine learning pipeline performs effectively, addressing challenges such as class 

imbalance and high dimensionality. However, it has a limitation in the Online Shoppers Intention dataset, 

which represents user interactions as static, session-based records. By treating sessions as static, this method 

disregards the temporal patterns in consumer behavior, which play a vital role in shaping purchasing 

decisions. Despite the good performance, the current pipeline presents both training as a whole and user 

interactions as static, and they do not interact with each other. One possible future direction is to incorporate 

temporal or sequential modeling (e.g., RNNs or transformers) in order to capture changing contexts within a 

session. Moreover, the presentation of explainable AI methods (such as SHAP or LIME) may empower model 

transparency and facilitate the interpretation of the model by business end-users. Together, these directions 

open pathways toward building more dynamic, interpretable, and business-oriented predictive systems. 

4. Conclusions 
In this paper, a robust and interpretable pipeline for machine learning to predict online purchase 

intention was suggested, with which a part of the behavioral click stream data (from the Online Shoppers 

Intention repository) was employed. The study addressed key problems in this realm, including the class 

imbalance problem, high dimensionality, and the requirement for interpretability in real-time decision 

systems. By implementing a series of preprocessing, feature engineering, SMOTE-based class balancing, and 

chi-square feature selection, this study designed a scalable workflow that was tested on six popular classifiers. 

The hyper-SVC was the top-performing model, with an ROC-AUC of 0.886, and the accuracy for the best-

performing model was 88.3%, which is sufficient for distinguishing between purchasing and non-purchasing 

sessions. PageValues, ProductRelated duration, and Returning_Visitor variables were among the key 

behavioral indicators that were highly associated with purchasing. Not only did the pipeline retain predictive 

ability, but it also allowed for the clear interpretation of feature relevance through statistical and visual 

examination. The contribution of the study is in showing how scalable and reproducible ML pipelines can be 

used to improve e-commerce personalization applied to a highly imbalanced dataset. It also emphasizes the 

importance of preprocessing choices, model selection, and interpretability in practical applications. However, 

the model assumes user behavior to be static and session-based, failing to account for temporal sequence and 
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cross-session behavior. A natural next step in research would be to apply sequence-based deep learning 

techniques, such as recurrent or attention-based mechanisms, for modeling the evolution of intent. 

Furthermore, the inclusion of XAI techniques can also provide an additional level of transparency and trust in 

AP for personalization systems. 
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