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1. Introduction

Soil is a natural material that plays a fundamental role in civil
engineering, serving as the foundation for essential infrastructure such as
buildings, roads, dams, and other load-bearing structures. The geotechnical
suitability of local soil properties is a decisive factor influencing structural
stability and safety, particularly in rapidly urbanizing regions such as Pathum
Thani Province, located within the Bangkok Metropolitan Region. The
predominant clay soils in this area are highly sensitive to fluctuations in
moisture content; variations in water can induce swelling or shrinkage, thereby
affecting load-bearing capacity and potentially compromising structural
integrity. Therefore, accurate and reliable soil characterization is imperative for
effective infrastructure planning and design. A widely accepted approach for
evaluating the behavior of fine-grained soils involves determining the Atterberg
Limits, which include the Liquid Limit (LL), Plastic Limit (PL), and Plasticity
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Index (PI). These parameters are essential for classifying clay types and predicting soil performance under
varying moisture conditions and applied loads [1]. However, the results of Atterberg Limit tests often exhibit
variability due to differences in operator expertise, equipment calibration, sample preparation, and
environmental factors, which may undermine data reliability and reproducibility.

To address such inconsistencies, researchers have recently introduced Statistical Process Control
(SPC) and the Process Capability Index (Cpk) from industrial engineering as systematic tools for assessing the
stability and performance of laboratory testing processes. For example, Hasan and Abuel-Naga [2] applied
electrochemical techniques to improve the precision of PI measurements, enabling more reliable process
capability assessments. Marusi¢ and Jagodnik [3] demonstrated that the fall cone method produces more
consistent LL results compared to the conventional Casagrande apparatus. Likewise, Rosas et al. [4] and
Knadel et al. [5] emphasized the potential of integrating machine learning and spectroscopy techniques to
reduce measurement bias and enhance test accuracy. Despite these advancements, most previous studies have
focused primarily on improving individual testing methods rather than evaluating the overall process
capability and measurement uncertainty of soil characterization procedures. Furthermore, the application of
SPC and Cpk analysis to geotechnical testing, particularly for Atterberg Limits of clay soils, remains limited,
especially within the ASEAN region, where heterogeneous soil conditions and diverse laboratory practices
can lead to inconsistent results. Accordingly, the present study aims to analyze the PI of clay soils in Pathum
Thani Province and to evaluate the consistency and capability of the testing process through the application
of SPC and Cpk methodologies. The ultimate objective is to systematically quantify data reliability and process
stability, thereby ensuring that the test results are robust and suitable for incorporation into geotechnical
design frameworks in rapidly developing urban environments.

2. Theoretical Framework and Related Research

The evaluation of soil properties, particularly the Atterberg Limits of clayey soils, is fundamental in
civil engineering as it influences the design and long-term stability of infrastructure [1-3]. The Liquid Limit
(LL), Plastic Limit (PL), and Plasticity Index (PI) are essential parameters for soil classification and for
predicting deformation behavior under variable moisture and load conditions. However, traditional testing
methods often face variability stemming from operator technique and equipment inconsistencies, which may
compromise data reliability [6]. To improve precision and consistency, industrial engineering approaches such
as Statistical Process Control (SPC) and the Process Capability Index (Cpk) have been integrated into soil
testing [4,7]. Recent studies have explored alternative measurement techniques, including electrical resistivity
modeling [8], diffuse reflectance spectroscopy [9], and machine learning-based estimations [10], aiming to
reduce human-induced errors and enhance rapid analysis. Moreover, the inherent variability of geotechnical
properties significantly affects design safety, highlighting the importance of robust statistical evaluations [6].
The strong correlation between Atterberg Limits and compaction characteristics further emphasizes PI as a
key predictor for field performance [11]. Additionally, chemical and electrochemical stabilization techniques
have proven effective in modifying soil plasticity in tropical soils [12]. These integrated approaches underscore
the necessity of combining advanced measurement techniques and process control strategies to enhance data
reliability and structural safety in geotechnical engineering.

Therefore, the theoretical foundation of this study is built upon the integration of geotechnical testing
principles with industrial quality management methodologies. By combining the deterministic nature of soil
mechanics (through Atterberg Limits and classification) with statistical control concepts (SPC, Cp, Cpk) and
uncertainty quantification, the framework provides a holistic approach to assess both the accuracy and
consistency of soil property testing. This integration is particularly novel in the ASEAN context, where
laboratory variability often challenges the reliability of soil classification for design and construction.

2.1 Atterberg Limits and Soil Classification

Atterberg Limits are quantitative indices used to describe the consistency and moisture-related
behavior of clay soils. These limits provide systematic insight into strength, shrinkage potential, and plasticity
under varying water contents [13]. Standardized testing procedures follow ASTM D4318-17 [1] and comprise:



ASEAN ]. Sci. Tech. Report. 2026, 29(2), e260404. 3of14

- Liquid Limit (LL): The moisture content at which soil transitions from a plastic to a liquid state.

- Plastic Limit (PL): The moisture level at which soil shifts from semi-solid to plastic behavior.

- Shrinkage Limit (SL): The lowest moisture content at which further drying does not result in volume
reduction. Soil classification based on the PI is derived using the equation 1.

PI=LL-PL (1)

This index allows the classification of soils according to the Unified Soil Classification System (USCS),
where the Plasticity Index (PI) and Liquid Limit (LL) thresholds define the soil type and its expected
engineering behavior. The USCS categorizes fine-grained soils based on LL and PI values using the
Casagrande Plasticity Chart, which delineates soil boundaries through the empirical A-line relationship, as
shown in equation 2.

PI = 0.73(LL - 20) @)

This relationship helps differentiate clay and silt behavior and is widely applied in geotechnical
engineering practice for soil classification purposes.
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Figure 1. Casagrande plasticity chart showing classification of fine-grained soils based on LL and PI [14].

The A-line separates silts (ML/MH) from clays (CL/CH), with plasticity and liquidity thresholds
guiding the classification [14]. Soil groups are interpreted not only by index values but also by their
geotechnical behavior in construction and load-bearing scenarios.
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Figure 2. Plasticity chart for the USCS classification according to ASTM D4318-17 [1]
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Table 1. Soil classification criteria according to USCS

Soil Group (USCS) LL (%) PI (%) Key Characteristics
CL - Clay, Low LL <50 PI below A-line and PI<7 Acceptable settlement; easily
Plasticity B (or ~7-17: medium) compacted
CH - Clay, High LL > 50 PI above A-line and PI > High shrink-swell potential; requires
Plasticity 17 stabilization (e.g., lime/cement)
ML / MH - Silt varies . Low shear strength; easily saturated
(Low/High Plasticity)  with LL PIbelow A-line and flow-prone i ’

Recent advancements in soil characterization have introduced alternative methods to assess Atterberg
Limits with improved precision and reproducibility. These approaches range from spectroscopic techniques
to machine learning models and geotechnical interrelationships.

This study introduces a process-oriented framework for Atterberg Limits evaluation by integrating
Statistical Process Control (SPC), process capability indices, and uncertainty assessment. Unlike previous
works that emphasized prediction, correlation, or material characterization, this approach bridges
geotechnical testing with quality management tools, providing a new perspective on the reliability, stability,
and interpretive confidence of soil property testing, as summarized in Table 2.

Table 2. Summary of Recent Studies on Atterberg Limits and Identified Research Gaps

Atterberg Spectroscopy Machine Correlation Soil SPC/ Uncertainty

Reference Limits / Indirect Learning /Empirical Structure Process & Guard

Focus Estimation (ML) Analysis Capability Band
Knadel, LL, PL,
Rehman et PI X
al. [5]
Rosas et al. LL, PL, .
[4] PI
Bhavya & LL, PL, N
Nagaraj [10] PI
Karakan et

LL, PI
al. [15] *
D .

ghghaman PI N

& Ipek [16]

LL, PL,
This Study PI X X

As summarized in Table 2, most previous studies focused on improving test precision or correlation
analysis but rarely quantified process capability and uncertainty. This identified gap forms the foundation of
the present study.

2.2 Statistical Process Control (SPC)

Statistical Process Control (SPC) refers to a set of statistical tools used to monitor, analyze, and control
variability within testing or production processes. In this study, the primary SPC tool applied is the Individual
Control Chart, also known as the X-MR Chart, which consists of two components [17].

221.X-Chart (Individual Value Chart) is used to monitor the central tendency of measured data.

- Mean of the data series:
1 n
X=->x 3)
i=1

- Control limits for the X-Chart:
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UCLy = X 4+ 2.66 - MR, LCLy =X —2.66 - MR (4)

Where :

X =Mean of the data series

n = Number of samples

X; = Individual measurement

MR= Average moving range

UCLy = Upper control limit

LCLx = Lower control limit

2.2.2 The MR-Chart (Moving Range Chart) is used to assess short-term variability between successive
measurements.

- Moving range for each data pair:
MR; = |X; — X;_4| ©)

- Mean of the moving ranges:

MR = ﬁz MR, ©)

2.2.3 Process Capability Index (Cpk)

The Process Capability Index (Cpk) is a quantitative metric used to evaluate how well a process can
produce outputs within predefined specification limits. It considers both process variability and the location
of the process mean relative to the specification range.

The standard formula is:

?)

. (USL—p n—LSL
Cpk = mm( 36 ' 3o )
Where:

USL = Upper Specification Limit
LSL = Lower Specification Limit
i = Process mean
o = Standard deviation of the data

Common interpretation criteria include:
Cpk < 1.00, meaning the process is incapable or poorly controlled
Cpk = 1.00, meaning marginally acceptable
Cpk > 1.33, meaning the process exhibits high capability and statistical control

Integrating Cpk into the evaluation of soil properties, such as PI, enables a quantitative link between
geotechnical characteristics and the ability to maintain testing consistency and quality. This approach supports
data-driven decision-making in soil classification and construction design.

3. Research Framework

This study is grounded in an integrative framework combining concepts from civil engineering and
industrial engineering. Its primary focus is the assessment of clay soil properties using Atterberg Limits,
specifically the LL, PL, and PI. These parameters are essential for classifying clay soils according to the USCS
and for predicting soil behavior under real-world conditions, such as mechanical loading and moisture
variation. The data obtained from laboratory tests are subsequently analyzed statistically to evaluate process
consistency and quality through the application of SPC and the computation of the Cpk [18]. The independent
variables in this study include the Atterberg Limit values (LL, PL, PI) and fundamental soil sample
characteristics such as sampling location and initial moisture content, which directly influence soil behavior.
The dependent variables are the Cp and Cpk indices, which reflect the capability of the testing process. A Cpk
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>1.33 is typically required for high capability relative to specification limits; values between 1.00-1.33 indicate
marginal capability as shown in Figure 3.

Output

Input L l;rocz:ss /71_\1_4811_1}?(1010% -Process Capability & Reliability
- Atterberg Limits (LL, PL, PI) T SPC (MR ot | Indicators
- Soil Sample Characteristics - SPC (X-MR Charts) "| -Contribution: Integration of

. . - Process Capability (Cp, Cpk) . ; o
(Location, Moisture) - Uncertainty & Guard Band Geo'teclm.lcal Testing + Quality
’ Engineering Tools

A 4

Figure 3. Research framework for Atterberg Limits testing with SPC, Cp/Cpk, and uncertainty analysis.

4. Methodology

4.1 Study Area and Soil Sampling

This study was conducted in Pathum Thani Province, located in the lower Chao Phraya River basin.
The region’s predominant soil type is moisture-saturated clay, which is particularly sensitive to environmental
fluctuations. A total of 50 soil samples were collected across diverse subzones with varying environmental
conditions to ensure a broad representation of local variability. Samples were gathered in their natural
moisture state, stored in sealed containers, and subsequently transferred to the laboratory for formal testing.

4.2 Soil Property Testing

The collected soil samples were subjected to standard laboratory tests to determine their Atterberg
Limits, including Liquid Limit (LL), Plastic Limit (PL), and Shrinkage Limit (SL), in accordance with ASTM
D4318-17 [1]. Following the completion of these tests, the Plasticity Index (PI) was calculated using the
equation. The complete test results are summarized in Table 3, providing a statistical foundation for
subsequent analysis of process stability and capability.

Table 3. Atterberg Limits of Clay Soil Samples from Laboratory Testing

Sample Liquid Plastic Shrinkage Plasticity
No. Limit Limit Limit Index VLL VPL VSL
(LL, %) (PL, %) (SL, %) (PI, %)
1 60.65 57.52 33.57 3.13 0.9 0.46 0.07
2 52.06 46.47 32.24 5.6 0.88 0.75 0.4
3 61.52 57.99 28.22 3.52 0.98 0.59 0.47
4 40.29 35.26 23.95 5.03 0.8 0.65 0.06
5 48.46 40.76 27.08 7.7 0.89 0.74 0.48
6 47.84 43.1 26.39 4.74 0.75 0.59 0.41
7 51.87 45.64 26.12 6.23 0.8 0.68 0.51
8 48.45 39.34 29.27 9.11 0.93 0.44 0.32
9 59.83 53.79 33.99 6.04 0.82 0.4 0.28
10 50.14 44.68 34.02 5.46 0.99 0.86 0.46
48 56.51 51.64 41.32 4.87 0.83 0.57 0.15
49 53.56 49.37 314 4.19 0.75 0.52 0.25
50 42.03 36.33 26.91 5.7 0.74 0.42 0.31

*Note: Table 3 shows selected samples for illustration. Full results are included in the Supplementary
Appendix.

The relationship between moisture content and the volume ratio of soil samples (n = 50) exhibits a
consistently convex upward trend. This pattern reflects the expansion behavior of clayey soil mass as moisture
increases, a characteristic attributable to its high-water adsorption and retention capacity. In the low moisture
range (below 20%), the volume ratio remains relatively stable within 0.2-0.4, indicating that the soil remains
in a semi-solid state with preserved internal structure and limited deformability. When moisture rises to
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approximately 25-40%, the volume ratio increases noticeably, suggesting a transition into the plastic state
where the soil demonstrates enhanced deformability without fracturing. This behavior aligns with the defined
thresholds of PL and LL, as described by Atterberg [19]. Beyond 45% moisture content, the graph shows a
rapid increase in volume ratio, indicating entry into the liquid state. In this condition, the soil loses its shape-
retention capacity, and interparticle bonding weakens significantly. Such moisture levels exceed the LL and can
adversely affect the structural integrity of geotechnical applications, including foundations and compacted fills.

Soil State Chart

Volume Ratio

aoe ¢

Moisture

Figure 4. The relationship between moisture content and the volume ratio of soil samples

Figure 4 illustrates this volumetric transition clearly. The slope of the curve across different intervals
also suggests sample-specific responses to moisture variation. Notably, soils with higher PI values tend to
exhibit greater expansion, potentially due to differences in clay mineral composition. These PI values are
consequently used as key indicators for evaluating soil behavior and serve as the basis for statistical process
analysis in subsequent research stages.

Table 4. Statistical Analysis of Atterberg Limit Variables

Variable N Mean SE Mean StDev Minimum Q1 Median Q3
LL 50 51.454 0.917 6.484 39.600 47.080 50.325 56.330
PL 50 45.944 0.988 6.987 33.770 40.627 44.750 51.785
SL 50 31.184 0.821 5.806 20.030 27.365 29.835 33.995
PI 50 5.510 0.269 1.902 2.170 4.250 5.335 6.230

The statistical analysis of 50 clay soil samples revealed Atterberg Limit values that reflect distinctive
geotechnical characteristics of the study area in Pathum Thani Province. Specifically, the average LL was
51.45%, with a standard deviation of 6.48, indicating that local soils exhibit a broad moisture transition range
from liquid to plastic states. Liquid Limit values exceeding 50% suggest that most samples belong to high
water-retention clays with pronounced plasticity behavior. The PL had an average of 45.94% and a median of
45.77%, reflecting a symmetrically distributed dataset and indicating that most soils transition from semi-solid
to plastic form at relatively high moisture levels. This range aligns with favorable workability for foundation
and compaction applications. Shrinkage Limit (SL) values averaged 31.18%, suggesting that the minimum
moisture level at which volume reduction ceases remains relatively high. This behavior is typical of deep-layer
clays with fine-grained structures capable of preserving volumetric stability upon drying. The Plasticity Index
(PI), defined as the difference between LL and PL, averaged 5.51% with a range of 2.17-10.75%, classifying the
soil samples within the low to medium plasticity range based on USCS criteria. The concentration of PI values
within a narrow bandwidth indicates a high degree of consistency in soil characteristics across the sampled
region. This observation aligns with initial control chart results (X-MR), which confirmed process stability.
The statistical data suggest that clay soils in Pathum Thani exhibit low to moderate plasticity, making them
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suitable for compaction work with manageable moisture sensitivity. These findings provide a sound
foundation for subsequent process capability evaluation using the Cpk index and SPC methodology.

5. Results
5.1 Process Consistency Evaluation of Plasticity Index Testing

The consistency of the Plasticity Index (PI) testing process was assessed using an Individual Control
Chart (X-MR Chart), which includes two components: the Individual Value Chart (X-Chart) and the Moving
Range Chart (MR-Chart). These charts evaluate both central tendency and short-term variability across
successive measurements of PI values. The statistical control parameters derived from the test data are
summarized in Table 5.
Table 5. Control Chart Parameters from X-MR Analysis of PI Data

Mean Moving Upper Control Lower Control Upper Control - Lower Control

Process Mean Range Limit X Chart Limit X Chart Limit MR Limit MR
Chart Chart
5.51 2.426 11.96 -0.94 7.925 0

The analysis revealed that the average Plasticity Index (PI) from 50 test samples was 5.51%, with a
standard deviation of 1.90. Based on the Individual Value Chart, all data points were found within the
statistical control boundaries. Upper Control Limit (UCL) = 11.96 and Lower Control Limit (LCL) = —-0.94 with
no observations falling outside the acceptable range. This indicates the absence of special cause variation or
systematic irregularities. Similarly, the Moving Range Chart showed an average moving range (MK) of 2.43,
and no individual MR values exceeded the UCL of 7.93. These results confirm that the PI testing process was
statistically stable and consistent across the entire dataset, as shown in Figure 5.

I-MR Chart of PI
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84 UCL=7.925
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T
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Observation

Figure 5. X-MR Control Chart of Plasticity Index

Upon examining the data distribution, no systematic bias or directional drift was observed, and the
variation appeared random throughout the dataset. This confirms that the PI testing process was statistically
"in control," in accordance with the principles of Statistical Process Control (SPC) [17]. There were no signs of
abnormal behavior caused by process shifts or external disturbances. As such, the test results from all 50
samples can be considered sufficiently reliable, serving as a strong foundation for evaluating the process
capability index (Cpk) in the subsequent section.

5.2 Process Capability Assessment of Plasticity Index Testing.

The capability of the Plasticity Index (PI) testing process was evaluated using the Cp and Cpk indices
under predefined specification limits: a Lower Specification Limit (LSL) of 2.00 and an Upper Specification
Limit (USL) of 10.00. This specification range is grounded in geotechnical engineering considerations. A PI
value below 2.00 generally indicates non-plastic material, which is unsuitable for compaction applications due
to poor deformation capacity. Conversely, PI values exceeding 10.00 suggest highly plastic clays that may
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cause structural instability, such as shrinkage upon drying or excessive swelling when exposed to moisture.
This rationale aligns with the classification criteria defined by the Unified Soil Classification System (USCS),
which categorizes clays into three ranges: Low plasticity: PI < 7, Medium plasticity: 7 < PI < 17, and High
plasticity: PI > 17. Therefore, selecting a specification range of 2-10 effectively encompasses materials within
the “low to medium plasticity” category, consistent with the characteristics of Pathum Thani clay soils
observed in this study. These threshold values support the engineering suitability of the materials for
foundational and fill applications while setting boundaries that protect against undesirable behaviors under
field conditions, as presented in Figure 6.

Process Capability of PI
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PPM Total 40000.00 PPM Total 69702.74 PPM Total 41572.09

Figure 6. Process Capability Analysis of Plasticity Index

The analysis revealed that the process capability index values were Cp = 0.702 and Cpk = 0.616, both
below the commonly accepted benchmark of 1.00 or higher for quality control. A Cp value less than 1.00
indicates that the process variation exceeds the tolerance defined by the specification limits. In addition, the
Cpk value of 0.616 confirms that the process mean is not centered within the specification range. This
conclusion is supported by the observation that the upper capability (CPU) exceeds the lower capability (CPL),
which indicates that the process distribution is skewed toward the Lower Specification Limit (LSL). Cp reflects
the theoretical capability of the process, assuming perfect centering. The low value suggests substantial
internal variation. On the other hand, Cpk considers the position of the process mean, and the resulting value
reveals that the process average deviates from the midpoint of the specification range. Such misalignment may
introduce performance risks under field conditions. The Parts Per Million (PPM) analysis showed that
approximately 4 percent of the results exceeded the Upper Specification Limit (USL), which is equivalent to
40,000 PPM. Although no values fell below the LSL, the presence of high-side outliers negatively affects overall
process conformity. According to structural engineering standards, a Cpk value of at least 1.33 is typically
required to ensure reliable performance. The observed Cpk falls short of this requirement, even when material-
specific variability is taken into account. In conclusion, while the PI testing process demonstrates statistical
stability, the overall capability remains low. To address this issue, it is recommended to improve moisture
control, enhance sample preparation procedures, and refine measurement techniques. These adjustments can
help reduce process variation and increase the Cpk value to meet engineering reliability standards more effectively.

5.3 Trend Analysis

Trend analysis of the Plasticity Index (PI) values across 50 test samples revealed a randomly
distributed pattern, with no observable upward or downward trend throughout the testing sequence. The
corresponding sample sequence chart confirms that the data remained statistically stable over time. This
indicates that the testing process did not experience time-based drift or variation induced by external factors,
such as environmental fluctuations or procedural inconsistency during sample handling, as shown in Figure 7.
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Scatterplot of PT vs Sample Regression Analysis: PI versus Sample
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Figure 7. Trend Analysis of the Plasticity Index (PI)

To investigate the temporal behavior of the PI and determine whether a systematic trend exists across
the sequence of measurements, a Linear Trend Analysis was performed using Minitab 16. The dataset
consisted of PI values from 50 consecutively measured soil samples. The results were visualized through a
scatterplot with an overlaid linear trend line to assess directional movement. The analysis indicated that PI
values were distributed across the range of approximately 2 to 11, without exhibiting any clear upward or
downward trajectory. The linear trend line displayed an extremely shallow slope, suggesting no significant
temporal change in PI values throughout the testing sequence. If evaluated using a regression model, the
coefficient of determination (R?) was found to be lower than 0.10, implying that linear trends explain only a
minimal portion of the observed variability. This finding supports the interpretation that the PI testing process
is temporally stable and free from progressive drift or systematic deviation. The absence of trend-related
anomalies aligns with the results from the X-MR control chart, which demonstrated that the process operates
within statistically stable conditions. Therefore, there is no indication of abnormal variation at any specific
point in the sample sequence. The trend-free nature of the data reinforces earlier SPC results and confirms that
the testing process was conducted under controlled and repeatable conditions, without interference from
special causes. The estimated linear regression equation, using Sample Order as the independent variable and
PI as the dependent variable, is expressed as:

PI = 5.5923 — 0.0032 - Sample

This equation further illustrates that the slope is nearly zero, and the process mean remains consistent
throughout the sample order.
Table 6. The regression analysis results

Slope R-Squared (R?) P-Value Residual Standard Deviation
-0.0032 0.1% 0.864 1.9207

Based on the regression analysis results, the slope of —0.0032 indicates a slight negative trend in PI
values as sample order increases. However, the associated p-value of 0.864 demonstrates that this trend is not
statistically significant. The coefficient of determination (R?) equals just 0.1%, meaning that the linear trend
line explains only 0.1% of the variation in PI values. This suggests that the trend has virtually no influence on
the overall behavior of the dataset. Accordingly, it can be concluded that the PI testing process does not exhibit
a clear temporal pattern across the sample sequence. This finding supports the earlier X-MR chart analysis,
which confirmed the statistical stability of the testing process and the absence of systematic time-dependent changes.
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5.4 Uncertainty Analysis

The uncertainty of the mean PI was evaluated using a 95 % confidence interval to assess the reliability
and precision of the testing results. The computed mean PI was 5.51, with a 95 % confidence interval ranging
from 5.08 to 5.94, indicating a relatively narrow dispersion and confirming the stability of the dataset. This
narrow range reflects good measurement precision and supports confidence in the reliability of soil quality
assessments. According to the statistical summary presented in Table 3, the descriptive values are as follows:
Mean = 5.51, Standard Deviation = 1.90, and 95 % Confidence Interval of the Mean = [5.08, 5.94]. Subsequently,
the expanded uncertainty was determined using the following equation 8.

U=k- ®)

Sle

Where:
U = Expanded Uncertainty
k = Coverage factor (for 95% confidence, typically k = 2)
o = Standard deviation
n= Sample size
This expanded uncertainty offers a quantitative expression of the range within which the true mean
value is expected to fall with high confidence. A relatively low uncertainty indicates high reproducibility and
test consistency.

U= 1.90
V50

by k = 2 (95% confidence interval)
= 10.537

The expanded uncertainty of +0.537 represents the confidence interval of the true process mean, not
the deviation of individual test results. This indicates that the estimated mean PI lies within this range at a
95% confidence level. This becomes especially critical when considered alongside specification limits. For
instance, if a measured PI value approaches the Upper Specification Limit (USL) of 10.00 such as 9.5 units the
inclusion of uncertainty may result in values exceeding the allowable threshold. Therefore, caution is advised
when interpreting PI results, and it is recommended to evaluate uncertainty in conjunction with specification
criteria to minimize engineering risk. On the other hand, a narrow confidence interval reflects the consistency
of the testing process and reduces the likelihood that the results will deviate substantially from standard thresholds.
This reinforces the reliability of the PI measurements and supports their use in process capability evaluation.

Table 7. Summary of Expanded Uncertainty (+U) and Percent Error

Summary Value Description
PI (u) 5.51 Based on the Plasticity Index results from 50 soil samples
(o) 1.90 Calculated using Minitab statistical analysis
Factor (k) 2 Corresponds to a 95% confidence level
1.90
Uncertainty (xU) +0.537 U=2 Ne
% Uncertainty of Mean 9.74 %x 100 = 0.537 =+ 5.51 x 100

To enhance decision reliability near specification boundaries, a Guard Band was established based on
the expanded uncertainty (+0.537). This approach is especially critical when assessing Plasticity Index (PI)
values that approach the Lower Specification Limit (LSL = 2.00) or Upper Specification Limit (USL = 10.00).
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Table 8. Guard Band Assessment for Specification-Based Decision-Making

Specification
Limit

Lower Spec Limit ~ 2.00  2.00+0.537=2.537  PI<2.537 should be considered near the LSL boundary.

Upper Spec Limit ~ 10.00  10.00 - 0.537 =9.463  PI >9.463 should be considered near the USL boundary.

Value  Guard Band (zU) Cautionary Interpretation

Values falling within the range of 2.537 to 9.463 are considered to lie within the compliance zone,
representing acceptable conformity to the specification limits. However, PI values approaching either limit
should be interpreted with engineering caution, as measurement uncertainty may influence the classification
outcome. For instance, a sample yielding a PI of 9.2 lies within the upper cautionary zone. Considering the
expanded uncertainty of +0.537, the true value could potentially exceed the Upper Specification Limit (USL =
10.00) in practice. Therefore, such borderline cases should be treated conservatively and not be conclusively
classified as within specification, particularly in quality control applications such as soil compaction or fill
material evaluation. Incorporating guard bands into process capability evaluation enhances the robustness
and reliability of engineering decisions near specification boundaries. This approach helps reduce false
acceptance or rejection risks, ensuring more dependable quality assurance under conditions of measurement
uncertainty.

6. Discussion

In the process capability analysis using Statistical Process Control (SPC), the X-MR charts for Liquid
Limit (LL), Plastic Limit (PL), and Plasticity Index (PI) demonstrated that all test results were within control
limits, confirming statistical stability and the absence of abnormal variation. This outcome indicates that the
testing procedure is consistent and reliable for laboratory practice. Process capability indices were recalculated
for PI with respect to the specification limits (LSL = 2.00, USL = 10.00). The results showed Cp =0.702 and Cpk
=0.616, both lower than the Automotive Industry Action Group benchmark of 1.33. These findings reveal that
although the process is statistically stable, its capability remains limited, reflecting moderate internal
variability. Compared with the initially reported values, the corrected indices suggest that the process is closer
to acceptable levels, but further improvements are still necessary. Enhancements in operational parameters,
particularly moisture regulation, sample preparation, and instrument calibration, could help reduce
variability and improve performance toward capability benchmarks. The corrected uncertainty analysis
provided additional insights. The expanded uncertainty was calculated as +0.537, equivalent to approximately
9.7% of the mean PI value (5.51). This is substantially lower than previously reported and demonstrates that
the measurement system has reasonable precision. Considering guard band adjustments, this uncertainty
improves the reliability of decisions regarding specification compliance. These results align with prior studies
by Hasan and Abuel-Naga [2] and Abdallah et al. [7], which emphasized the value of statistical indices in
geotechnical testing. Overall, the findings indicate that while the current process is not fully capable, it remains
stable, reasonably precise, and suitable for preliminary geotechnical assessments.

7. Conclusion

This study aimed to evaluate the consistency and capability of the soil property testing process, with
emphasis on the Plasticity Index (PI), a key parameter for classifying clay soil based on the Unified Soil
Classification System (USCS). Plasticity Index serves as a critical indicator in geotechnical engineering
applications, such as compaction assessment and subgrade stability analysis. The research methodology
integrated Statistical Process Control (SPC), Process Capability Index (Cpk) evaluation, trend analysis, and
uncertainty analysis to provide a comprehensive view of temporal stability, process reliability, and data
limitations. The analysis demonstrated that the X-MR Control Chart, comprising the X Chart and Moving
Range Chart, effectively captured process stability. All 50 PI data points were located within control limits,
with no sign of abnormal patterns or systemic interference, confirming statistical stability of the measurement
process. Process capability was assessed using Cp and Cpk indices under specified limits: Lower Specification
Limit (LSL) = 2.00 and Upper Specification Limit (USL) = 10.00. Results showed Cp =0.702 and Cpk = 0.616,
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both falling below the industry-accepted benchmark of 1.33 for quality assurance. These values indicate that
although the process is statistically stable, it remains incapable of fully meeting specification requirements due
to internal variability, particularly in relation to results near the upper limit of the specification range. Trend
analysis using linear regression revealed no statistically significant time-based drift in PI values (R? = 0.1%, p-
value = 0.864), reinforcing the stability of the process over sequential measurements. No embedded anomalies
or directional bias were detected, corroborating findings from SPC. Uncertainty was quantified using a Type
A evaluation based on actual test data. The corrected expanded uncertainty (+U) was +0.537, representing
approximately 9.7% of the mean PI value (5.51). This relatively moderate level of uncertainty indicates that
the measurement system is more precise than previously reported, providing higher confidence in results even
when values approach specification boundaries. When integrated with Guard Band considerations, this level
of uncertainty improves interpretive safety and reduces decision-making error in material quality control for
engineered fill. In summary, the PI testing process demonstrated temporal stability and statistical control.
However, limited process capability (Cpk =0.616 <1.33) underscores the need for stricter control of influencing
factors such as moisture regulation, sample preparation, and measurement precision. Furthermore, the
corrected uncertainty analysis highlights the importance of including measurement uncertainty as an integral
component of engineering judgment when interpreting PI results near specification limits.
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