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Abstract: This study evaluated the consistency and capability of the testing 

process for the Plasticity Index (PI) of fine-grained soils, a parameter critical for 

soil classification and geotechnical design, particularly in compaction and 

foundation analyses. Statistical Process Control (SPC) was applied using X–MR 

control charts to monitor process stability, while process capability was assessed 

through Cp and Cpk indices under specification limits of LSL = 2.00 and USL = 

10.00. Trend analysis and uncertainty evaluation were also conducted to 

strengthen the assessment framework. Results showed that the PI testing process 

was statistically stable, with all data points within control limits. However, 

process capability indices (Cp = 0.702, Cpk = 0.616) were below the benchmark 

value of 1.33, indicating insufficient performance due to inherent variability. 

Linear regression revealed no significant time-related trend (R² = 0.1%, p = 0.864), 

confirming temporal consistency. Uncertainty analysis yielded an expanded 

uncertainty of ±0.537 at 95% confidence, equivalent to 9.7% of the mean PI. Such 

uncertainty suggests possible misclassification of results near specification 

thresholds. In conclusion, although the PI testing process was under statistical 

control and free of time-related drift, it exhibited substantial variability and high 

uncertainty. These findings emphasize the need to reduce variation and 

incorporate uncertainty into quality management practices, providing a more 

reliable basis for decision-making in geotechnical engineering applications. 

Keywords: Plasticity index; statistical process control; capability; soil compaction 

1. Introduction 

 Soil is a natural material that plays a fundamental role in civil 

engineering, serving as the foundation for essential infrastructure such as 

buildings, roads, dams, and other load-bearing structures. The geotechnical 

suitability of local soil properties is a decisive factor influencing structural 

stability and safety, particularly in rapidly urbanizing regions such as Pathum 

Thani Province, located within the Bangkok Metropolitan Region. The 

predominant clay soils in this area are highly sensitive to fluctuations in 

moisture content; variations in water can induce swelling or shrinkage, thereby 

affecting load-bearing capacity and potentially compromising structural 

integrity. Therefore, accurate and reliable soil characterization is imperative for 

effective infrastructure planning and design. A widely accepted approach for 

evaluating the behavior of fine-grained soils involves determining the Atterberg 

Limits, which include the Liquid Limit (LL), Plastic Limit (PL), and Plasticity 
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Index (PI). These parameters are essential for classifying clay types and predicting soil performance under 

varying moisture conditions and applied loads [1]. However, the results of Atterberg Limit tests often exhibit 

variability due to differences in operator expertise, equipment calibration, sample preparation, and 

environmental factors, which may undermine data reliability and reproducibility. 

To address such inconsistencies, researchers have recently introduced Statistical Process Control 

(SPC) and the Process Capability Index (Cpk) from industrial engineering as systematic tools for assessing the 

stability and performance of laboratory testing processes. For example, Hasan and Abuel-Naga [2] applied 

electrochemical techniques to improve the precision of PI measurements, enabling more reliable process 

capability assessments. Marušić and Jagodnik [3] demonstrated that the fall cone method produces more 

consistent LL results compared to the conventional Casagrande apparatus. Likewise, Rosas et al. [4] and 

Knadel et al. [5] emphasized the potential of integrating machine learning and spectroscopy techniques to 

reduce measurement bias and enhance test accuracy. Despite these advancements, most previous studies have 

focused primarily on improving individual testing methods rather than evaluating the overall process 

capability and measurement uncertainty of soil characterization procedures. Furthermore, the application of 

SPC and Cpk analysis to geotechnical testing, particularly for Atterberg Limits of clay soils, remains limited, 

especially within the ASEAN region, where heterogeneous soil conditions and diverse laboratory practices 

can lead to inconsistent results. Accordingly, the present study aims to analyze the PI of clay soils in Pathum 

Thani Province and to evaluate the consistency and capability of the testing process through the application 

of SPC and Cpk methodologies. The ultimate objective is to systematically quantify data reliability and process 

stability, thereby ensuring that the test results are robust and suitable for incorporation into geotechnical 

design frameworks in rapidly developing urban environments. 

2. Theoretical Framework and Related Research 
 The evaluation of soil properties, particularly the Atterberg Limits of clayey soils, is fundamental in 

civil engineering as it influences the design and long-term stability of infrastructure [1–3]. The Liquid Limit 

(LL), Plastic Limit (PL), and Plasticity Index (PI) are essential parameters for soil classification and for 

predicting deformation behavior under variable moisture and load conditions. However, traditional testing 

methods often face variability stemming from operator technique and equipment inconsistencies, which may 

compromise data reliability [6]. To improve precision and consistency, industrial engineering approaches such 

as Statistical Process Control (SPC) and the Process Capability Index (Cpk) have been integrated into soil 

testing [4,7]. Recent studies have explored alternative measurement techniques, including electrical resistivity 

modeling [8], diffuse reflectance spectroscopy [9], and machine learning-based estimations [10], aiming to 

reduce human-induced errors and enhance rapid analysis. Moreover, the inherent variability of geotechnical 

properties significantly affects design safety, highlighting the importance of robust statistical evaluations [6]. 
The strong correlation between Atterberg Limits and compaction characteristics further emphasizes PI as a 

key predictor for field performance [11]. Additionally, chemical and electrochemical stabilization techniques 

have proven effective in modifying soil plasticity in tropical soils [12]. These integrated approaches underscore 

the necessity of combining advanced measurement techniques and process control strategies to enhance data 

reliability and structural safety in geotechnical engineering.  
 Therefore, the theoretical foundation of this study is built upon the integration of geotechnical testing 

principles with industrial quality management methodologies. By combining the deterministic nature of soil 

mechanics (through Atterberg Limits and classification) with statistical control concepts (SPC, Cp, Cpk) and 

uncertainty quantification, the framework provides a holistic approach to assess both the accuracy and 

consistency of soil property testing. This integration is particularly novel in the ASEAN context, where 

laboratory variability often challenges the reliability of soil classification for design and construction. 

2.1 Atterberg Limits and Soil Classification 

Atterberg Limits are quantitative indices used to describe the consistency and moisture-related 

behavior of clay soils. These limits provide systematic insight into strength, shrinkage potential, and plasticity 

under varying water contents [13]. Standardized testing procedures follow ASTM D4318–17 [1] and comprise: 
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- Liquid Limit (LL): The moisture content at which soil transitions from a plastic to a liquid state. 

- Plastic Limit (PL): The moisture level at which soil shifts from semi-solid to plastic behavior. 

- Shrinkage Limit (SL): The lowest moisture content at which further drying does not result in volume 

reduction. Soil classification based on the PI is derived using the equation 1. 

 
PI = LL - PL (1) 

  

 This index allows the classification of soils according to the Unified Soil Classification System (USCS), 

where the Plasticity Index (PI) and Liquid Limit (LL) thresholds define the soil type and its expected 

engineering behavior. The USCS categorizes fine-grained soils based on LL and PI values using the 

Casagrande Plasticity Chart, which delineates soil boundaries through the empirical A-line relationship, as 

shown in equation 2. 

 

PI = 0.73(LL - 20) (2) 

 

 This relationship helps differentiate clay and silt behavior and is widely applied in geotechnical 

engineering practice for soil classification purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Casagrande plasticity chart showing classification of fine-grained soils based on LL and PI [14]. 

 

 The A-line separates silts (ML/MH) from clays (CL/CH), with plasticity and liquidity thresholds 

guiding the classification [14]. Soil groups are interpreted not only by index values but also by their 

geotechnical behavior in construction and load-bearing scenarios.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plasticity chart for the USCS classification according to ASTM D4318‑17 [1] 
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Table 1. Soil classification criteria according to USCS 

Soil Group (USCS) LL (%) PI (%) Key Characteristics 

CL – Clay, Low 

Plasticity 
LL ≤ 50 

PI below A-line and PI < 7 

(or ~7–17: medium) 

Acceptable settlement; easily 

compacted 

CH – Clay, High 

Plasticity 
LL > 50 

PI above A-line and PI > 

17 

High shrink–swell potential; requires 

stabilization (e.g., lime/cement) 

ML / MH – Silt 

(Low/High Plasticity) 

varies 

with LL 
PI below A-line 

Low shear strength; easily saturated 

and flow-prone 

  

 Recent advancements in soil characterization have introduced alternative methods to assess Atterberg 

Limits with improved precision and reproducibility. These approaches range from spectroscopic techniques 

to machine learning models and geotechnical interrelationships. 

 This study introduces a process-oriented framework for Atterberg Limits evaluation by integrating 

Statistical Process Control (SPC), process capability indices, and uncertainty assessment. Unlike previous 

works that emphasized prediction, correlation, or material characterization, this approach bridges 

geotechnical testing with quality management tools, providing a new perspective on the reliability, stability, 

and interpretive confidence of soil property testing, as summarized in Table 2. 

Table 2. Summary of Recent Studies on Atterberg Limits and Identified Research Gaps 

Reference 

Atterberg 

Limits 

Focus 

Spectroscopy 

/ Indirect 

Estimation 

Machine 

Learning 

(ML) 

Correlation 

/ Empirical 

Analysis 

Soil 

Structure  

SPC / 

Process 

Capability 

Uncertainty 

& Guard 

Band 

Knadel, 

Rehman et 

al. [5] 

LL, PL, 

PI 
x      

Rosas et al. 

[4] 

LL, PL, 

PI 
 x     

Bhavya & 

Nagaraj [10] 

LL, PL, 

PI 
   x   

Karakan et 

al. [15] 
LL, PI   x    

Dehghanian 

& İpek [16] 
PI    x   

This Study 
LL, PL, 

PI 
    x x 

 

 As summarized in Table 2, most previous studies focused on improving test precision or correlation 

analysis but rarely quantified process capability and uncertainty. This identified gap forms the foundation of 

the present study. 

2.2 Statistical Process Control (SPC)  

Statistical Process Control (SPC) refers to a set of statistical tools used to monitor, analyze, and control 

variability within testing or production processes. In this study, the primary SPC tool applied is the Individual 

Control Chart, also known as the X-MR Chart, which consists of two components [17].  

2.2.1. X-Chart (Individual Value Chart) is used to monitor the central tendency of measured data. 

- Mean of the data series: 

𝑋̅ =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 (3) 

- Control limits for the X-Chart: 
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UCLX = 𝑋̅ + 2.66 ⋅ 𝑀𝑅,  LCLX = 𝑋̅ − 2.66 ⋅ 𝑀𝑅 (4) 

Where : 

  𝑋̅ = Mean of the data series 

  n = Number of samples 

  𝑋𝑖 = Individual measurement 

  𝑀𝑅= Average moving range 

  UCLX = Upper control limit 

  LCLX = Lower control limit 

2.2.2 The MR-Chart (Moving Range Chart) is used to assess short-term variability between successive 

measurements. 

- Moving range for each data pair: 

𝑀𝑅𝑖 = |𝑋𝑖 − 𝑋𝑖−1| (5) 

- Mean of the moving ranges: 

𝑀𝑅 =
1

𝑛 − 1
∑ 𝑀𝑅𝑖

𝑛

𝑖=2

 (6) 

2.2.3 Process Capability Index (Cpk) 

 The Process Capability Index (Cpk) is a quantitative metric used to evaluate how well a process can 

produce outputs within predefined specification limits. It considers both process variability and the location 

of the process mean relative to the specification range. 

The standard formula is: 

Cpk = min (
𝑈𝑆𝐿 − μ

3σ
,
μ − 𝐿𝑆𝐿

3σ
) (7) 

  Where: 

  USL = Upper Specification Limit 

  LSL = Lower Specification Limit 

  μ = Process mean 

  σ =  Standard deviation of the data 

 Common interpretation criteria include: 

  Cpk < 1.00, meaning the process is incapable or poorly controlled 

  Cpk = 1.00, meaning marginally acceptable 

  Cpk > 1.33, meaning the process exhibits high capability and statistical control 

 Integrating Cpk into the evaluation of soil properties, such as PI, enables a quantitative link between 

geotechnical characteristics and the ability to maintain testing consistency and quality. This approach supports 

data-driven decision-making in soil classification and construction design. 

3. Research Framework 
 This study is grounded in an integrative framework combining concepts from civil engineering and 

industrial engineering. Its primary focus is the assessment of clay soil properties using Atterberg Limits, 

specifically the LL, PL, and PI. These parameters are essential for classifying clay soils according to the USCS 

and for predicting soil behavior under real-world conditions, such as mechanical loading and moisture 

variation. The data obtained from laboratory tests are subsequently analyzed statistically to evaluate process 

consistency and quality through the application of SPC and the computation of the Cpk [18]. The independent 

variables in this study include the Atterberg Limit values (LL, PL, PI) and fundamental soil sample 

characteristics such as sampling location and initial moisture content, which directly influence soil behavior. 

The dependent variables are the Cp and Cpk indices, which reflect the capability of the testing process. A Cpk 
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≥ 1.33 is typically required for high capability relative to specification limits; values between 1.00–1.33 indicate 

marginal capability as shown in Figure 3. 

 

 

 

 

 

 

Figure 3. Research framework for Atterberg Limits testing with SPC, Cp/Cpk, and uncertainty analysis. 

4. Methodology 

4.1 Study Area and Soil Sampling 

This study was conducted in Pathum Thani Province, located in the lower Chao Phraya River basin. 

The region’s predominant soil type is moisture-saturated clay, which is particularly sensitive to environmental 

fluctuations. A total of 50 soil samples were collected across diverse subzones with varying environmental 

conditions to ensure a broad representation of local variability. Samples were gathered in their natural 

moisture state, stored in sealed containers, and subsequently transferred to the laboratory for formal testing. 

4.2 Soil Property Testing 

The collected soil samples were subjected to standard laboratory tests to determine their Atterberg 

Limits, including Liquid Limit (LL), Plastic Limit (PL), and Shrinkage Limit (SL), in accordance with ASTM 

D4318-17 [1]. Following the completion of these tests, the Plasticity Index (PI) was calculated using the 

equation. The complete test results are summarized in Table 3, providing a statistical foundation for 

subsequent analysis of process stability and capability.  

Table 3. Atterberg Limits of Clay Soil Samples from Laboratory Testing 

Sample 

No. 

Liquid 

Limit  

(LL, %) 

Plastic 

Limit  

(PL, %) 

Shrinkage 

Limit  

(SL, %) 

Plasticity 

Index  

(PI, %) 

VLL VPL VSL 

1 60.65 57.52 33.57 3.13 0.9 0.46 0.07 

2 52.06 46.47 32.24 5.6 0.88 0.75 0.4 

3 61.52 57.99 28.22 3.52 0.98 0.59 0.47 

4 40.29 35.26 23.95 5.03 0.8 0.65 0.06 

5 48.46 40.76 27.08 7.7 0.89 0.74 0.48 

6 47.84 43.1 26.39 4.74 0.75 0.59 0.41 

7 51.87 45.64 26.12 6.23 0.8 0.68 0.51 

8 48.45 39.34 29.27 9.11 0.93 0.44 0.32 

9 59.83 53.79 33.99 6.04 0.82 0.4 0.28 

10 50.14 44.68 34.02 5.46 0.99 0.86 0.46 
... ... ... ... ... ... ... ... 

48 56.51 51.64 41.32 4.87 0.83 0.57 0.15 

49 53.56 49.37 31.4 4.19 0.75 0.52 0.25 

50 42.03 36.33 26.91 5.7 0.74 0.42 0.31 

*Note: Table 3 shows selected samples for illustration. Full results are included in the Supplementary 

Appendix. 

 The relationship between moisture content and the volume ratio of soil samples (n = 50) exhibits a 

consistently convex upward trend. This pattern reflects the expansion behavior of clayey soil mass as moisture 

increases, a characteristic attributable to its high-water adsorption and retention capacity. In the low moisture 

range (below 20%), the volume ratio remains relatively stable within 0.2–0.4, indicating that the soil remains 

in a semi-solid state with preserved internal structure and limited deformability. When moisture rises to 
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approximately 25–40%, the volume ratio increases noticeably, suggesting a transition into the plastic state 

where the soil demonstrates enhanced deformability without fracturing. This behavior aligns with the defined 

thresholds of PL and LL, as described by Atterberg [19]. Beyond 45% moisture content, the graph shows a 

rapid increase in volume ratio, indicating entry into the liquid state. In this condition, the soil loses its shape-

retention capacity, and interparticle bonding weakens significantly. Such moisture levels exceed the LL and can 

adversely affect the structural integrity of geotechnical applications, including foundations and compacted fills.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The relationship between moisture content and the volume ratio of soil samples 

 

 Figure 4 illustrates this volumetric transition clearly. The slope of the curve across different intervals 

also suggests sample-specific responses to moisture variation. Notably, soils with higher PI values tend to 

exhibit greater expansion, potentially due to differences in clay mineral composition. These PI values are 

consequently used as key indicators for evaluating soil behavior and serve as the basis for statistical process 

analysis in subsequent research stages. 

Table 4. Statistical Analysis of Atterberg Limit Variables  

Variable N Mean SE Mean StDev Minimum Q1 Median Q3 

LL 50 51.454 0.917 6.484 39.600 47.080 50.325 56.330 

PL 50 45.944 0.988 6.987 33.770 40.627 44.750 51.785 

SL 50 31.184 0.821 5.806 20.030 27.365 29.835 33.995 

PI 50 5.510 0.269 1.902 2.170 4.250 5.335 6.230 

 

 The statistical analysis of 50 clay soil samples revealed Atterberg Limit values that reflect distinctive 

geotechnical characteristics of the study area in Pathum Thani Province. Specifically, the average LL was 

51.45%, with a standard deviation of 6.48, indicating that local soils exhibit a broad moisture transition range 

from liquid to plastic states. Liquid Limit values exceeding 50% suggest that most samples belong to high 

water-retention clays with pronounced plasticity behavior. The PL had an average of 45.94% and a median of 

45.77%, reflecting a symmetrically distributed dataset and indicating that most soils transition from semi-solid 

to plastic form at relatively high moisture levels. This range aligns with favorable workability for foundation 

and compaction applications. Shrinkage Limit (SL) values averaged 31.18%, suggesting that the minimum 

moisture level at which volume reduction ceases remains relatively high. This behavior is typical of deep-layer 

clays with fine-grained structures capable of preserving volumetric stability upon drying. The Plasticity Index 

(PI), defined as the difference between LL and PL, averaged 5.51% with a range of 2.17–10.75%, classifying the 

soil samples within the low to medium plasticity range based on USCS criteria. The concentration of PI values 

within a narrow bandwidth indicates a high degree of consistency in soil characteristics across the sampled 

region. This observation aligns with initial control chart results (X-MR), which confirmed process stability. 

The statistical data suggest that clay soils in Pathum Thani exhibit low to moderate plasticity, making them 
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suitable for compaction work with manageable moisture sensitivity. These findings provide a sound 

foundation for subsequent process capability evaluation using the Cpk index and SPC methodology. 

5. Results 
5.1 Process Consistency Evaluation of Plasticity Index Testing 

 The consistency of the Plasticity Index (PI) testing process was assessed using an Individual Control 

Chart (X-MR Chart), which includes two components: the Individual Value Chart (X-Chart) and the Moving 

Range Chart (MR-Chart). These charts evaluate both central tendency and short-term variability across 

successive measurements of PI values. The statistical control parameters derived from the test data are 

summarized in Table 5. 

Table 5. Control Chart Parameters from X-MR Analysis of PI Data 

Process Mean 
Mean Moving 

Range 

Upper Control 

Limit X Chart 

Lower Control 

Limit X Chart 

Upper Control 

Limit MR 

Chart 

Lower Control 

Limit MR 

Chart 

5.51 2.426 11.96 -0.94 7.925 0 

 

 The analysis revealed that the average Plasticity Index (PI) from 50 test samples was 5.51%, with a 

standard deviation of 1.90. Based on the Individual Value Chart, all data points were found within the 

statistical control boundaries. Upper Control Limit (UCL) = 11.96 and Lower Control Limit (LCL) = –0.94 with 

no observations falling outside the acceptable range. This indicates the absence of special cause variation or 

systematic irregularities. Similarly, the Moving Range Chart showed an average moving range (MR̄) of 2.43, 

and no individual MR values exceeded the UCL of 7.93. These results confirm that the PI testing process was 

statistically stable and consistent across the entire dataset, as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5.  X-MR Control Chart of Plasticity Index 

 Upon examining the data distribution, no systematic bias or directional drift was observed, and the 

variation appeared random throughout the dataset. This confirms that the PI testing process was statistically 

"in control," in accordance with the principles of Statistical Process Control (SPC) [17]. There were no signs of 

abnormal behavior caused by process shifts or external disturbances. As such, the test results from all 50 

samples can be considered sufficiently reliable, serving as a strong foundation for evaluating the process 

capability index (Cpk) in the subsequent section. 

5.2 Process Capability Assessment of Plasticity Index Testing.  
The capability of the Plasticity Index (PI) testing process was evaluated using the Cp and Cpk indices 

under predefined specification limits: a Lower Specification Limit (LSL) of 2.00 and an Upper Specification 

Limit (USL) of 10.00. This specification range is grounded in geotechnical engineering considerations. A PI 

value below 2.00 generally indicates non-plastic material, which is unsuitable for compaction applications due 

to poor deformation capacity. Conversely, PI values exceeding 10.00 suggest highly plastic clays that may 
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cause structural instability, such as shrinkage upon drying or excessive swelling when exposed to moisture. 
This rationale aligns with the classification criteria defined by the Unified Soil Classification System (USCS), 

which categorizes clays into three ranges: Low plasticity: PI < 7, Medium plasticity: 7 ≤ PI ≤ 17, and High 

plasticity: PI > 17. Therefore, selecting a specification range of 2–10 effectively encompasses materials within 

the “low to medium plasticity” category, consistent with the characteristics of Pathum Thani clay soils 

observed in this study. These threshold values support the engineering suitability of the materials for 

foundational and fill applications while setting boundaries that protect against undesirable behaviors under 

field conditions, as presented in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Process Capability Analysis of Plasticity Index  

 The analysis revealed that the process capability index values were Cp = 0.702 and Cpk = 0.616, both 

below the commonly accepted benchmark of 1.00 or higher for quality control. A Cp value less than 1.00 

indicates that the process variation exceeds the tolerance defined by the specification limits. In addition, the 

Cpk value of 0.616 confirms that the process mean is not centered within the specification range. This 

conclusion is supported by the observation that the upper capability (CPU) exceeds the lower capability (CPL), 

which indicates that the process distribution is skewed toward the Lower Specification Limit (LSL). Cp reflects 

the theoretical capability of the process, assuming perfect centering. The low value suggests substantial 

internal variation. On the other hand, Cpk considers the position of the process mean, and the resulting value 

reveals that the process average deviates from the midpoint of the specification range. Such misalignment may 

introduce performance risks under field conditions. The Parts Per Million (PPM) analysis showed that 

approximately 4 percent of the results exceeded the Upper Specification Limit (USL), which is equivalent to 

40,000 PPM. Although no values fell below the LSL, the presence of high-side outliers negatively affects overall 

process conformity. According to structural engineering standards, a Cpk value of at least 1.33 is typically 

required to ensure reliable performance. The observed Cpk falls short of this requirement, even when material-

specific variability is taken into account. In conclusion, while the PI testing process demonstrates statistical 

stability, the overall capability remains low. To address this issue, it is recommended to improve moisture 

control, enhance sample preparation procedures, and refine measurement techniques. These adjustments can 

help reduce process variation and increase the Cpk value to meet engineering reliability standards more effectively. 

5.3 Trend Analysis 

Trend analysis of the Plasticity Index (PI) values across 50 test samples revealed a randomly 

distributed pattern, with no observable upward or downward trend throughout the testing sequence. The 

corresponding sample sequence chart confirms that the data remained statistically stable over time. This 

indicates that the testing process did not experience time-based drift or variation induced by external factors, 

such as environmental fluctuations or procedural inconsistency during sample handling, as shown in Figure 7. 
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Figure 7. Trend Analysis of the Plasticity Index (PI) 

 To investigate the temporal behavior of the PI and determine whether a systematic trend exists across 

the sequence of measurements, a Linear Trend Analysis was performed using Minitab 16. The dataset 

consisted of PI values from 50 consecutively measured soil samples. The results were visualized through a 

scatterplot with an overlaid linear trend line to assess directional movement. The analysis indicated that PI 

values were distributed across the range of approximately 2 to 11, without exhibiting any clear upward or 

downward trajectory. The linear trend line displayed an extremely shallow slope, suggesting no significant 

temporal change in PI values throughout the testing sequence. If evaluated using a regression model, the 

coefficient of determination (R²) was found to be lower than 0.10, implying that linear trends explain only a 

minimal portion of the observed variability. This finding supports the interpretation that the PI testing process 

is temporally stable and free from progressive drift or systematic deviation. The absence of trend-related 

anomalies aligns with the results from the X-MR control chart, which demonstrated that the process operates 

within statistically stable conditions. Therefore, there is no indication of abnormal variation at any specific 

point in the sample sequence. The trend-free nature of the data reinforces earlier SPC results and confirms that 

the testing process was conducted under controlled and repeatable conditions, without interference from 

special causes. The estimated linear regression equation, using Sample Order as the independent variable and 

PI as the dependent variable, is expressed as: 

𝑃𝐼̂ = 5.5923 − 0.0032 ⋅ Sample 

This equation further illustrates that the slope is nearly zero, and the process mean remains consistent 

throughout the sample order. 

Table 6. The regression analysis results 

Slope R-Squared (R²) P-Value Residual Standard Deviation 

−0.0032 0.1% 0.864 1.9207 

 Based on the regression analysis results, the slope of –0.0032 indicates a slight negative trend in PI 

values as sample order increases. However, the associated p-value of 0.864 demonstrates that this trend is not 

statistically significant. The coefficient of determination (R²) equals just 0.1%, meaning that the linear trend 

line explains only 0.1% of the variation in PI values. This suggests that the trend has virtually no influence on 

the overall behavior of the dataset. Accordingly, it can be concluded that the PI testing process does not exhibit 

a clear temporal pattern across the sample sequence. This finding supports the earlier X-MR chart analysis, 

which confirmed the statistical stability of the testing process and the absence of systematic time-dependent changes. 
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5.4 Uncertainty Analysis 

The uncertainty of the mean PI was evaluated using a 95 % confidence interval to assess the reliability 

and precision of the testing results. The computed mean PI was 5.51, with a 95 % confidence interval ranging 

from 5.08 to 5.94, indicating a relatively narrow dispersion and confirming the stability of the dataset. This 

narrow range reflects good measurement precision and supports confidence in the reliability of soil quality 

assessments. According to the statistical summary presented in Table 3, the descriptive values are as follows: 

Mean = 5.51, Standard Deviation = 1.90, and 95 % Confidence Interval of the Mean = [5.08, 5.94]. Subsequently, 

the expanded uncertainty was determined using the following equation 8. 
 

𝑈 = 𝑘 ⋅
σ

√𝑛
 (8) 

   

 Where: 

   U = Expanded Uncertainty 

   k = Coverage factor (for 95% confidence, typically k = 2) 

   σ =  Standard deviation 

   n =  Sample size 

 This expanded uncertainty offers a quantitative expression of the range within which the true mean 

value is expected to fall with high confidence. A relatively low uncertainty indicates high reproducibility and 

test consistency. 
 

𝑈 = 2 ⋅
1.90

√50
  

by  𝑘 = 2 (95% confidence interval) 
=  ±0.537  

  

The expanded uncertainty of ±0.537 represents the confidence interval of the true process mean, not 

the deviation of individual test results. This indicates that the estimated mean PI lies within this range at a 

95% confidence level. This becomes especially critical when considered alongside specification limits. For 

instance, if a measured PI value approaches the Upper Specification Limit (USL) of 10.00 such as 9.5 units the 

inclusion of uncertainty may result in values exceeding the allowable threshold. Therefore, caution is advised 

when interpreting PI results, and it is recommended to evaluate uncertainty in conjunction with specification 

criteria to minimize engineering risk. On the other hand, a narrow confidence interval reflects the consistency 

of the testing process and reduces the likelihood that the results will deviate substantially from standard thresholds. 

This reinforces the reliability of the PI measurements and supports their use in process capability evaluation. 

Table 7. Summary of Expanded Uncertainty (±U) and Percent Error 

Summary Value Description 

PI (𝜇) 5.51 Based on the Plasticity Index results from 50 soil samples 

(σ) 1.90 Calculated using Minitab statistical analysis 

Factor (k) 2 Corresponds to a 95% confidence level 

Uncertainty (±U) ±0.537 𝑈 = 2 ⋅
1.90

√50
 

% Uncertainty of Mean  9.74 
𝑈

μ
× 100 = 0.537 ÷ 5.51 × 100 

 To enhance decision reliability near specification boundaries, a Guard Band was established based on 

the expanded uncertainty (±0.537). This approach is especially critical when assessing Plasticity Index (PI) 

values that approach the Lower Specification Limit (LSL = 2.00) or Upper Specification Limit (USL = 10.00). 
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Table 8. Guard Band Assessment for Specification-Based Decision-Making 

Specification 

Limit 
Value Guard Band (±U) Cautionary Interpretation 

Lower Spec Limit 2.00 2.00 + 0.537 = 2.537 PI ≤ 2.537 should be considered near the LSL boundary. 

Upper Spec Limit 10.00 10.00 – 0.537 = 9.463 PI ≥ 9.463 should be considered near the USL boundary. 

 Values falling within the range of 2.537 to 9.463 are considered to lie within the compliance zone, 

representing acceptable conformity to the specification limits. However, PI values approaching either limit 

should be interpreted with engineering caution, as measurement uncertainty may influence the classification 

outcome. For instance, a sample yielding a PI of 9.2 lies within the upper cautionary zone. Considering the 

expanded uncertainty of ±0.537, the true value could potentially exceed the Upper Specification Limit (USL = 

10.00) in practice. Therefore, such borderline cases should be treated conservatively and not be conclusively 

classified as within specification, particularly in quality control applications such as soil compaction or fill 

material evaluation. Incorporating guard bands into process capability evaluation enhances the robustness 

and reliability of engineering decisions near specification boundaries. This approach helps reduce false 

acceptance or rejection risks, ensuring more dependable quality assurance under conditions of measurement 

uncertainty. 

6. Discussion 
 In the process capability analysis using Statistical Process Control (SPC), the X–MR charts for Liquid 

Limit (LL), Plastic Limit (PL), and Plasticity Index (PI) demonstrated that all test results were within control 

limits, confirming statistical stability and the absence of abnormal variation. This outcome indicates that the 

testing procedure is consistent and reliable for laboratory practice. Process capability indices were recalculated 

for PI with respect to the specification limits (LSL = 2.00, USL = 10.00). The results showed Cp = 0.702 and Cpk 

= 0.616, both lower than the Automotive Industry Action Group benchmark of 1.33. These findings reveal that 

although the process is statistically stable, its capability remains limited, reflecting moderate internal 

variability. Compared with the initially reported values, the corrected indices suggest that the process is closer 

to acceptable levels, but further improvements are still necessary. Enhancements in operational parameters, 

particularly moisture regulation, sample preparation, and instrument calibration, could help reduce 

variability and improve performance toward capability benchmarks. The corrected uncertainty analysis 

provided additional insights. The expanded uncertainty was calculated as ±0.537, equivalent to approximately 

9.7% of the mean PI value (5.51). This is substantially lower than previously reported and demonstrates that 

the measurement system has reasonable precision. Considering guard band adjustments, this uncertainty 

improves the reliability of decisions regarding specification compliance. These results align with prior studies 

by Hasan and Abuel-Naga [2] and Abdallah et al. [7], which emphasized the value of statistical indices in 

geotechnical testing. Overall, the findings indicate that while the current process is not fully capable, it remains 

stable, reasonably precise, and suitable for preliminary geotechnical assessments. 

7. Conclusion  
 This study aimed to evaluate the consistency and capability of the soil property testing process, with 

emphasis on the Plasticity Index (PI), a key parameter for classifying clay soil based on the Unified Soil 

Classification System (USCS). Plasticity Index serves as a critical indicator in geotechnical engineering 

applications, such as compaction assessment and subgrade stability analysis. The research methodology 

integrated Statistical Process Control (SPC), Process Capability Index (Cpk) evaluation, trend analysis, and 

uncertainty analysis to provide a comprehensive view of temporal stability, process reliability, and data 

limitations. The analysis demonstrated that the X-MR Control Chart, comprising the X Chart and Moving 

Range Chart, effectively captured process stability. All 50 PI data points were located within control limits, 

with no sign of abnormal patterns or systemic interference, confirming statistical stability of the measurement 

process. Process capability was assessed using Cp and Cpk indices under specified limits: Lower Specification 

Limit (LSL) = 2.00 and Upper Specification Limit (USL) = 10.00. Results showed Cp = 0.702 and Cpk = 0.616, 
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both falling below the industry-accepted benchmark of 1.33 for quality assurance. These values indicate that 

although the process is statistically stable, it remains incapable of fully meeting specification requirements due 

to internal variability, particularly in relation to results near the upper limit of the specification range. Trend 

analysis using linear regression revealed no statistically significant time-based drift in PI values (R² = 0.1%, p-

value = 0.864), reinforcing the stability of the process over sequential measurements. No embedded anomalies 

or directional bias were detected, corroborating findings from SPC. Uncertainty was quantified using a Type 

A evaluation based on actual test data. The corrected expanded uncertainty (±U) was ±0.537, representing 

approximately 9.7% of the mean PI value (5.51). This relatively moderate level of uncertainty indicates that 

the measurement system is more precise than previously reported, providing higher confidence in results even 

when values approach specification boundaries. When integrated with Guard Band considerations, this level 

of uncertainty improves interpretive safety and reduces decision-making error in material quality control for 

engineered fill. In summary, the PI testing process demonstrated temporal stability and statistical control. 

However, limited process capability (Cpk = 0.616 < 1.33) underscores the need for stricter control of influencing 

factors such as moisture regulation, sample preparation, and measurement precision. Furthermore, the 

corrected uncertainty analysis highlights the importance of including measurement uncertainty as an integral 

component of engineering judgment when interpreting PI results near specification limits. 
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