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Abstract: Staphylococcus saprophyticus is a significant uropathogen, particularly
in young women. Rising macrolide-lincosamide-streptogramin B (MLSB)
resistance poses therapeutic challenges. This study characterized phenotypic
and genotypic MLSB resistance patterns among S. saprophyticus UTI isolates in
Najaf, Iraq. Forty-two S. saprophyticus isolates were collected from urine samples
(February-April 2025) from patients aged 1-70 years. Phenotypic resistance was
assessed using the D-test methodology following CLSI guidelines. PCR
amplification targeted eight resistance genes: erm(C) and msr(A). Isolates
predominantly originated from females (28/42, 66.7%), with the highest
frequency in age groups 21-30 (11/42, 26.2%) and 31-40 years (10/42, 23.8%). The
D-test revealed that 25/42 (59.5%) isolates exhibited MLSB resistance: 9/42
(21.4%) demonstrated an inducible MLSB (iMLSB) phenotype, 16/42 (38.1%)
exhibited a constitutive MLSB (cMLSB) phenotype, and 8/42 (19.0%) displayed
a macrolide-streptogramin B (MS) phenotype, while 9/42 (21.4%) were MLSB-
negative. Molecular analysis detected resistance genes in only 9 of 25 (36%)
phenotypically MLSB-positive isolates. The erm(C) gene alone was present in
2/25 (8%) isolates, while erm(C)+msr(A) combination dominated at 7/25 (28%).
High MLSB resistance prevalence (59.5%) among S. saprophyticus isolates, with
cMLSB predominance and significant genotype-phenotype discordance (64%
phenotypically positive lacking detected genes), emphasizes the necessity for
routine D-testing and expanded molecular surveillance to guide antimicrobial
therapy in Iraqi healthcare settings.
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1. Introduction

Across the world, uncomplicated UTIs rank among the most frequently
encountered bacterial infections, placing a significant burden on healthcare
systems due to their high prevalence, recurrence rates, and association with the
emergence of antimicrobial resistance. Among young, sexually active females,
Staphylococcus saprophyticus ranks as the second leading etiological agent of
community-acquired UTIs, with prevalence ranging from 10-20% in this
population [1, 2]. Recent studies from Iraq and neighboring countries have
documented increasing resistance rates among S. saprophyticus strains,
highlighting the urgent need for robust epidemiological surveillance strategies
[3, 4]. MLSB antibiotics, with erythromycin, clindamycin, and streptogramins,
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remain clinically important for treating staphylococcal infections. However, resistance to these agents is
increasing globally. The main mechanisms of resistance comprise ribosomal target modification mediated by
erm gene-encoded methylases, along with efflux pumps driven by msr genes, and the enzyme-mediated
inactivation carried out by mph or Inu genes [5-7]. These genetic determinants produce three distinct
resistance phenotypes: constitutive MLSB (cMLSB), inducible MLSB (iMLSB), and macrolide-streptogramin B
(MSB), each carrying significant clinical implications [8-10].

The D-test remains the gold standard for detecting inducible clindamycin resistance in staphylococci.
This screening method identifies isolates that appear susceptible but may develop resistance under antibiotic
pressure, potentially leading to treatment failure [11, 12]. Molecular techniques, particularly PCR, complement
phenotypic testing by detecting specific resistance genes and strengthening epidemiological surveillance
through genotype-phenotype correlation analysis [5,13,14]. Among MLSB-resistant S. saprophyticus isolates,
the erm(C) and msr(A) genes are most frequently identified, although novel resistance mechanisms continue
to emerge across different geographic regions [15, 16]. Global resistance trends demonstrate concerning
increases. Uruguay reported elevated MLSB resistance prevalence among S. aureus isolates with strong
genotype-phenotype correlation [17]. Similarly, studies from Iran and Iraq documented high erythromycin
and clindamycin resistance rates alongside multidrug resistance patterns [18-20]. These findings reflect
broader trends in antimicrobial resistance, which are linked to the misuse and overuse of antibiotics. In Iraq,
erythromycin resistance rates range from 50% to 67%, while clindamycin resistance varies between 22% and
46% among staphylococcal isolates [21, 22]. This variability underscores the importance of combining D-test
methodology with molecular techniques for accurate resistance detection and monitoring.

Therefore, this inquiry aimed to characterize the phenotypical and genetical features of MLSB
resistance across S. saprophyticus isolates from UTI patients in Najaf, Iraq. The objectives were to generate
reliable local data for antimicrobial stewardship programs and guide clinicians toward more effective
therapeutic strategies.

2. Materials and Methods

2.1 Collection of Specimens and Isolation of Bacteria

Urinary specimens were gathered from patients attending Al-Sadr Hospital in Najaf, Iraq, from
February to April 2025. The study protocol received institutional approval, and all participants gave their
informed consent. Participants of either sex, aged 1-70 years, presenting with UTI symptoms were included.
Midstream urine specimens were collected using standard sterile techniques and processed within 2 hours of
collection.

2.2 Identification of bacterial isolates

MacConkey and Blood agar dishes were used for culturing urine specimens, which were incubated at
37 °C for 2448 hours. Staphylococcus saprophyticus isolates were recognized using blood and mannitol salt
agar, Gram stain, and conventional biochemical tests, including catalase and adverse coagulase reactions,
novobiocin resistance (5 pg disc), and mannitol fermentation, as per established protocols [23].

2.3 Phenotypic Detection of MLSB Resistance
2.3.1 D-Test Methodology
In accordance with CLSI instructions [24], the D-test was used to screen for resistance to clindamycin.
In this procedure, bacterial inocula were standardized to a 0.5 McFarland turbidity and subsequently streaked
onto Mueller-Hinton agar plates. Discs of erythromycin (15 pg) and clindamycin (2 pg) were applied on the
agar surface, maintaining a 15 mm spacing between their edges. Upon incubation at 37 °C for 18-24 h,
interpretations were made as outlined earlier [25].
e Inducible MLSB (iMLSB): A D-shaped distortion observed in the clindamycin inhibitory area in
proximity to the erythromycin disc.
e Constitutive MLSB (cMLSB): Resistance to the two clindamycin and erythromycin
e MS phenotype: Resistance to erythromycin with susceptibility to clindamycin (no D-zone)
¢ MLSB-negative: Susceptibility to both antibiotics
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2.3.2 Molecular Detection of Resistance Genes

Overnight cultures were subjected to genomic DNA isolation using a commercial kit (Promega, USA)
according to the supplier’s guidelines. DNA yield and purity were then assessed employing spectrophotometry at
an absorbance ratio of 260/280 nm. Detection of MLSB resistance genes (erm(C) and msr(A)) was performed
using PCR (Table 1). Primer design and cycling conditions were adopted from earlier reports [4,5]. Reaction
mixtures (25 puL) comprised of 12.5 uL of master mix (Promega), 1 puL of every primer (10 pmol), 2 pL of
extracted DNA, and 8.5 pL of nuclease-free water. Thermal cycling involved an initial denaturation at 94 °C
for 5 minutes, followed by 30 amplification cycles (94 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C for 1
minute), and a final extension step at 72 °C for 10 minutes. The resulting amplicons were resolved on 1.5%
agarose gels comprising ethidium bromide and visualized under UV illumination. Each run included both
positive and negative controls.

Table 1. Primers employed for the identification of MLSB resistance genes

Amplicon

Ref
Size (bp) eference

Gene Primer Sequence (5'—3')

erm(C) F: ATCTTTTAGCAAACCCGTATTC 190 [26]
R: CTTGTTGATCACGATAATTTCC

msr(A) F: AAGTTATATCATGAATAGATTGTCCTGTT 940 [27]
R: GGCACAATAAGAGTGTTTAAAGG

2.4 Statistical Analysis

The dataset was evaluated through descriptive statistical methods. Resistance profiles of S. saprophyticus
isolates were stratified by age and gender, and summarized as frequencies and proportions. The chi-square
analysis was used to determine associations between resistance and demographic factors. The level of
statistical significance was defined as p < 0.05, and all analyses were conducted using SPSS V 25.0.

3. Results and Discussion
3.1 Demographic Distribution and Clinical Epidemiology

Among the 42 S. saprophyticus isolates collected from UTI patients, a marked female predominance
was observed, with 28 isolates (66.7%) from females and 14 (33.3%) from males, resulting in a 2:1 female-to-
male ratio (Table 2). This gender distribution aligns with the well-established epidemiology of S. saprophyticus
as the second leading causative agent of community-acquired UTIs among sexually active females of younger
age groups, responsible for 10-20% of UTIs in this population [28,29]. The highest isolation rates occurred in
patients aged 21-30 years (11/42, 26.2%) and 31-40 years (10/42, 23.8%), with progressively lower frequencies
in older age groups: 41-50 years (7/42, 16.7%), 51-60 years (5/42, 11.9%), and 61-70 years (5/42, 11.9%). Notably,
no isolates were recovered from children under 10 years old, and only 4 isolates (9.5%) were from the 11-20
year age group. The concentration of cases in the 21-40-year age range corresponds with peak sexual activity
and aligns with anatomical, behavioral, and hormonal factors that predispose young women to S.
saprophyticus UTlIs [30, 31]. The absence of pediatric cases reinforces the rarity of this organism in childhood
UTIs, where Escherichia coli predominates. These demographic patterns are consistent with regional studies
from Iraq and neighboring countries, confirming S. saprophyticus as a significant uropathogen in reproductive-
age women [30-32].



ASEAN J. Sci. Tech. Report. 2025, 29(1), €261225. 40f 11

Table 2. Distribution of S. saprophyticus isolates by demographic characteristics (n=42)

Characteristic Category n (%)
Sex Male 14 (33.3)
Female 28 (66.7)
Age group (years) 1-10 0 (0.0)
11-20 4 (9.5)
21-30 11 (26.2)
31-40 10 (23.8)
41-50 7 (16.7)
51-60 5(11.9)
61-70 5(11.9)

Figure 1. Representative D-test results for S. saprophyticus: (A) inducible resistance with azithromycin, (B) inducible
resistance with erythromycin, (C) constitutive MLS resistance, (D) MS phenotype (macrolide
resistance without lincosamide induction).
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3.2 Phenotypic Resistance Patterns and Clinical Implications

D-test analysis revealed a concerning prevalence of MLSB resistance, with 25/42 isolates (59.5%)
demonstrating MLSB-positive phenotypes (Table 3). Among these, constitutive MLSB (cMLSB) resistance
predominated at 16/33 (48.4%), while inducible MLSB (iMLSB) accounted for 9/33 (27.3%) of tested isolates.
Additionally, 8/33 isolates (24.3%) exhibited the MS phenotype, and 9/42 (21.5%) were MLSB-negative. The
predominance of the cMLSB phenotype indicates widespread constitutive expression of ribosomal methylases
that modify the drug-binding site, conferring cross-resistance to macrolides, lincosamides, and streptogramin
B [33, 34]. This mechanism, typically mediated by erm genes, particularly erm(C) in staphylococci, results in
high-level resistance that cannot be overcome by increasing drug concentrations [35, 36]. The detection of
iMLSB in 27.3% of isolates has critical therapeutic implications, as these strains may appear susceptible to
clindamycin during routine antimicrobial testing; however, they may develop resistance upon exposure to
inducing agents [37, 38]. This finding strongly supports recommendations for mandatory D-testing of all
erythromycin-resistant staphylococci to prevent clinical failures [39-41]. The MS phenotype observed in 24.3%
of isolates represents macrolide-specific resistance, while maintaining lincosamide susceptibility, consistent
with efflux pump mechanisms typically associated with msr(A) genes that selectively export 14- and 15-
membered macrolides [42, 43]. This distinction has therapeutic relevance, as clindamycin remains effective
against MS phenotype isolates despite macrolide resistance.

Table 3. Distribution of MLSB resistance phenotypes as identified through the D-test.

Phenotype n (%) Clindamycin (2ug) Erythromycin (15ug)
iMLSB 9/33 (27.3) S R
cMLSB 16/33 (48.4) R R
MS 8/33 (24.3) S R
Total MLSB-positive 25/42 (59.5)
MLSB-negative 9/42 (21.5) S S

3.3 Molecular Characterization and Genotype-Phenotype Correlations

PCR analysis of the 25 phenotypically MLSB-positive isolates revealed resistance genes in only 9
samples (36%), demonstrating significant genotype-phenotype discordance (Table 4, Figures 1 and 2). The
erm(C) gene was detected either alone (2/25, 8%) or in combination with msr(A) (7/25, 28%), while 16/25 isolates
(64%) lacked detectable resistance genes despite expressing resistant phenotypes. The identification of erm(C)
as the primary resistance determinant aligns with global reports establishing it as the predominant methylase
gene in staphylococci [44]. The erm(C) gene encodes a 235 rRNA methylase that dimethylates the adenine
residue at A2058, preventing antibiotic binding and conferring the MLSB resistance phenotype [45]. The
co-occurrence of erm(C) and msr(A) in 28% of gene-positive isolates suggests that dual resistance mechanisms
may enhance overall resistance levels through combined ribosomal modification and efflux activity [33, 46,
47]. The absence of other tested resistance genes [erm(A), erm(B), msr(B), lin(A), mph(C), mef(A)] indicates a
limited genetic repertoire in this population, contrasting with the broader diversity reported in some
international studies but consistent with regional patterns showing erm(C) predominance [48, 49]. This focused
genetic profile may reflect local clonal expansion or selective pressure from specific antibiotic usage patterns
in the region. The substantial genotype-phenotype discordance (64% of resistant isolates lacking detectable genes)
warrants careful consideration. Several mechanisms may explain this finding: (1) presence of unexamined
resistance determinants, including novel erm alleles or rare MLSB genes not included in our panel [35, 50]; (2)
primer-template mismatches due to sequence variations in mobile genetic elements carrying resistance genes
[51]; (3) regulatory mutations affecting gene expression without altering coding sequences [34]; or (4)
chromosomal mutations in ribosomal proteins or RNA that confer resistance independently of classical
resistance genes [52]. These findings highlight the limitations of targeted PCR approaches and suggest that
whole-genome sequencing may be necessary to characterize resistance mechanisms in this population [51, 53].
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Table 4. Molecular detection of resistance genes in MLSB-positive isolates

Gene Pattern n/25 (%) Associated Phenotype
erm(C) only 2(8) cMLSB/iMLSB
erm(C) + msr(A) 7 (28) c¢MLSB + enhanced macrolide resistance
No genes detected 16 (64) Variable MLSB phenotypes
Total genes detected 9 (36) -

erm (C) gene
190 bp

S0 -

DINA Marker
100 bp/ 1 Kb

Figure 2. PCR amplification of the erm(C) gene (190 bp). Agarose gel electrophoresis (0.75 g agarose, 70 V, 1.5 h).
Lane M: marker; lanes 1-10: positive isolates.

1500
1000

rmsr (1) gene
940 bp

S0

IDINA Marker
100 bp/ 1 Kb

Figure 3. PCR amplification of the msr(A) gene (940 bp). Agarose gel electrophoresis (0.75 g agarose, 70 V, 1.5 h).
Lane M: marker; lanes 1-6: test samples [specify positive/negative for each if clear]; lanes 7-8: negative;
lanes 9-10: positive.

3.4 Clinical and Public Health Implications

The high prevalence of MLSB resistance (59.5%), particularly the significant proportion of iMLSB
phenotypes (27.3%), has direct implications for clinical practice. Empirical use of macrolides or lincosamides
for S. saprophyticus UTIs should be avoided in this setting, with preference given to nitrofurantoin or
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trimethoprim-sulfamethoxazole as first-line agents [54, 55]. The detection of iMLSB phenotypes requires
routine D-testing in clinical laboratories to prevent the inadvertent use of clindamycin in apparently
susceptible isolates that harbor inducible resistance [37, 38, 56]. These resistance patterns align with broader
antimicrobial resistance trends reported across Iraq, where rates of erythromycin resistance range from 50%
to 67% and clindamycin resistance from 22% to 46% among staphylococcal isolates [57, 58]. The findings
contribute to the growing evidence of increasing MLSB resistance in the Middle East region, likely driven by
antibiotic selection pressure and horizontal gene transfer [59-61].

3.5 Study Strengths and Limitations

The combined phenotypic and molecular approach provided comprehensive resistance
characterization, with D-testing offering cost-effective detection of clinically significant iMLSB phenotypes
while PCR revealed underlying genetic mechanisms [37, 41, 53]. However, several limitations should be
acknowledged. The single-center design may limit generalizability, the sample size of 42 isolates provides
limited statistical power for subgroup analyses, and the targeted gene panel may have missed novel or rare
resistance determinants. Future multicenter studies with expanded molecular panels, including whole-
genome sequencing, would provide more comprehensive epidemiological data and potentially resolve the
observed genotype-phenotype discordances [51, 53, 50].

4. Conclusions

This study reveals alarming levels of MLSB resistance (59.5%) among S. saprophyticus UTI isolates in
Najaf, Iraq, with constitutive resistance predominating; however, a clinically significant proportion exhibits
inducible resistance. The limited genetic repertoire dominated by erm(C) and msr(A), combined with substantial
genotype-phenotype discordance, highlights the complexity of resistance mechanisms and the necessity for
comprehensive surveillance approaches. These findings provide essential local epidemiological data to guide
empirical therapy decisions and emphasize the critical importance of regularly implementing the D-test in
clinical laboratories for the identification of inducible resistance and the prevention of treatment failures.
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