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A Convergence Theorem for Variational Inequality Problems and Fixed Points

Problems of Multi-Valued Mapping
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Abstract
The purpose of this paper is to introduce a new hybrid iterative scheme for finding
a common element of the solution set of variational inequality problem and the set of fixed
point of relatively nonexpansive multi-valued mapping. Under suitable conditions, we prove
some strong convergence theorems for the proposed schemes in Banach spaces. The results

presented in this paper were to improve and extend some recent works written by other authors.
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Introduction and Preliminaries

Let E be areal Banach space with dual E* and U = {z € E : ||z|| = 1} be the unit
sphere of E. A Banach space E is said to be strictly convex if ||25|| < 1 for all z,y € E

with ||z|]| = |ly|| = 1 and = # y. E'is said to be smooth if the limit iin?) w exists for
—>

each z,y € U. The norm of E is said to be Fréchet differentiable if, for each x € U, the
limit is attained uniformly for y € U. FE is said to be uniformly smooth if the limit exists
uniformly in z,y € U. The modulus of convexity of E is the function ¢ : [0,2] — [0, 1]
defined by

) rT+y
o(e) = inf {1 = |52 - 2w € B llell = iyl = Ll = il > <}

A Banach space E is uniformly convex if 6(g) > 0 for all € € (0, 2].

Let C be a nonempty closed and convex subset of a real Banach space E. Let
A: C — E* be a mapping. Then A is said to be:
(1) monotone if

<x—y,A.’E—Ay> 2 07 any € C7
(2) a-inverse-strongly monotone if there exists a constant a > 0 such that
<x - y,Ax - Ay> 2 O[HAJ’J - Ay||27 \V/JZ, Y€ C.

Clearly, the class of monotone mappings include the class of a-inverse-strongly monotone
mappings. The class of inverse-strongly monotone have been studied by many authors to
approximate a common fixed point (see [ 1-2] for more details).

Let A : C — E* be an operator. The variational inequality problem for an
operator A is as follows: find Z € C' such that

(y—z,Az) >0, (1.1)

forall y € C. The set of solution of (1.1) is denote by VI(A,C).
Let E be a Banach space with the dual space E*. We denote by J the normalized
duality mapping from E to 2F" defined by

J(@) ={f" € B*: (x, f*) = |«|* IF*]l = ll=[l}-
The functional ¢ : E x E — R defined by
$a,y) = [l|* = 2{z, Jy) + |lyl*, (1.2)

forall z,y € E, where J is the normalized duality mapping. It is obvious from the definition
of function ¢ that

(lyll = llz)* < é(y, 2) < (lyll + l|=]))?, Yo,y € B, (1.3)
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and
oz, y) = d(z,y) + o(z,2) + 2(2 — x, Jy — j2), Vx,y,2z € E. (1.9)

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then, for any
z,y € E, ¢(x,y) = 0if and only if z = y. It is sufficient to show that, if ¢(z,y) = 0,
then z = y. From (1.2), we have ||z|| = ||ly||. This implies that (z, Jy) = ||z||*> = ||Jy|*.
From the definition of J, one has Jx = Jy. Therefore, we have x = y (see [ 3-4] for more
details).

A mapping T : C'— C'is said to be nonexpansive if | Tx — Ty|| < ||z — y||, for all
z,y € C. An element p € C is called a fixed point of T if Tp = p. Denote by F(T') the
set of fixed points of T, that is, F(T) = {x € C : Tz = x}. A point p in C is called an
asymptotic fixed point of T [5] if C' contains a sequence {z,} which converges weakly to
p such that lim, e ||2n — T'zy|| = 0. The asymptotic fixed point set of T' is denoted by
F(T).

A mapping T : C' — C'is called relatively nonexpansive [6-8] if

(R1) F(T) is nonempty;

(R2) ¢(p,Tz) < ¢(p,x) forall z € C and p € F(T);

(R3) F(T) = F(T).

Amapping T : C — C'is called relatively quasi-nonexpansive
if the conditions (R1) and (R2) hold.

On the author hand, the generalized projection Ilc : E — C'is a mapping that
assigns to an arbitrary point x € E the minimum point of the functional ¢(z,y), that is,
IIcz = z, where Z is the solution to the minimization problem:

_, = i f 5 . 1.5
o(z.2) = inf 0(y.) 15)
The existence and uniqueness of the operator Il follows from the properties of
the functional ¢(y,x) and the strict monotonicity of the mapping J (see, for example,
[3-5, 9-10]). If E is a smooth, strictly convex and reflexive Banach space, then Il¢ is a
closed relatively quasi-nonexpansive mapping from E onto C' with F(Il¢) = C [11].

Let N(C) and CB(C) denoted the family of nonempty subsets and nonempty
closed bounded subsets of C, respectively. The Hausdorff metric on CB(C) is defined by

H(A;, Ay) = max{ sup d(x, A1), sup d(y, A2)}
TEA2 yeA;

for all Ay, Ay € CB(C), where d(z, A1) = inf{||lx — y||;y € A1}

An element p € C'is called a fixed point of T : C' — N(C) if p € F(T), where
F(T):={peC:peT(p)} Apointpe Cis call an asymptotic fixed point of a multi-
valued mapping T' : C — N(C) if there exists a sequence {z,} in C which converges
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weakly to p and U_)m d(zp, T(x,)) = 0. The asymptotic fixed point set of T is denoted
by F(T).

A multi-valued mapping T': C — N(C) is said to be relatively nonexpansive if
(R1) F(T) is nonempty;

(R2) ¢(p,z) < ¢(p,x) forall z € C, z € T(x) and, p € F(T);

(R3) F(T) = F(T).

Sastry and Babu [12] prove that the Mann and Ishikawa iteration schemes for a
multi-valued mapping T with a fixed point p converge to a fixed point ¢ of T.. Panyanak
[13] extended the result of Sastry and Babu to uniformly convex Banach spaces. In 2009,
Shahzad and Zegeye [14] proved strong convergence theorems for the Ishikawa iteration
scheme involving quasi-nonexpansive multi-valued mappings in uniformly convex Banach
spaces. lterative methods for approximating fixed points of multi-valued mappings in Ba-
nach spaces have been studied by many authors, see [15-18] for more detail. Recently,
Homaeipour and Razani [19] introduced an iterative sequence for finding a common ele-
ment of the set of solutions of an equilibrium problem and the set of common fixed points
of relatively nonexpansive multi-valued mappings. Motivated by other recent works, in this
paper, we introduce an iterative process for the approximation of a common element of
the set of fixed point of relatively nonexpansive multi-valued mapping and the solution set
of variational inequality problem. We prove that an iterative sequence converges strongly
to a common element of the set of fixed point of relatively nonexpansive multi-valued
mapping and the solution set of variational inequality problem in Banach spaces.

We also need the following lemmas for the proof of our main results.

Lemma 1.2. Let E be a strictly convex and smooth Banach space. Then, forall x,y € F,
o(x,y) = 0if and only if z = y [20].

Lemma 1.3. Let C be a nonempty closed convex subset of a smooth Banach space E
and xz € E. Then xo = ez if and only if (xo —y, Jx — Jxo) > 0 for all y € C [5].

Lemma 1.4. Let E be a reflexive, strictly convex and smooth Banach space, C be a
nonempty closed convex subset of E and = € E. Then ¢(y,Hczx) + ¢(Illgx, z) < ¢(y, )
forall y € C [5]

Lemma 1.5. Let FE be a smooth and strictly convex Banach space and C be a nonempty
closed convex subset of E. Suppose T : C'— N(C) is a relatively nonexpansive multi-
valued mapping. Then F(T) is a closed convex subset of C' [19].

Lemma 1.6. Let E be a uniformly convex and smooth Banach space and r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0, co] — [0, co] with
9(0) = 0 such that

9lly — 2l < o(y, 2), Vy,z € Br(0) = {l|lz| < r}.
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See [21] for more detail.

Lemma 1.7. Let E be a uniformly convex Banach space and r > 0. Then, there exists
a strictly increasing, continuous and convex function h : [0,00) — [0, 00) with h(0) = 0
such that

ez + Byll* < allzl|” + BllylI> — aBh(||z — yl|)
forallz,y € By :={z€ X :||z|| <randall a, € [0,1] with a« + § = 1.
See [22] for more detail.

Lemma 1.8. Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex real Banach space E and A : C' — E* be a continuous monotone mapping. For
any r > 0, define a mapping F, : E — C as follows:

1
Frx:{ZEC:<y—z,Az>+;(y—z,Jz—J:c>20, Yy € C}

forall x € C. Then the following hold:
(1) F, is a single-valued mapping;
(2) F(F,) = VI(A,C);
(3) VI(A,C) is a closed and convex subset of C;
@) ¢(q, Frx) + ¢(Frz,x) < ¢(q,x) for all g € F(F}).

See [23] for more detail.

Remark 1.9. We remark that if £ is a Banach space. Then the following are well known
(see [3] for more details):

(1) If E is an arbitrary Banach space, then J is monotone and bounded;

(2) If E is a strictly convex, then J is strictly monotone;

(3) If E is a smooth, then J is single valued and semi-continuous;

(4) If E'is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E;

(5) If E is reflexive, smooth and strictly convex, then the normalized duality map-
ping J = Js is single valued, one-to-one and onto;

(6) If E is reflexive, smooth and strictly convex, then J~! is also single valued,
one-to-one, onto and it is the duality mapping from E* into E;

(7) If E'is uniformly smooth, then E is smooth and reflexive;

(8) E is uniformly smooth if and only if E* is uniformly convex.
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Methodology

1. Studying and investigating on the variation inequality problems.
2. Studying and investigating on the relatively nonexpansive multi-valued mappins.

3. Establishing the new theorem for the variation inequality problems and fixed point
problems in Banach spaces.

Main result

In this section, we introduce an iterative scheme which converges strongly to a
common solution of the variational inequality problems and a fixed point of a relatively
nonexpansive multi-valued mapping in a real uniformly smooth and uniformly convex
Banach space.

Theorem 3.1. Let C' be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E. Let T : C — N(C) be a relatively nonexpansive
multi-valued mapping and let A be a continuous monotone mapping of C into E*. Define
a mapping F, : E — C by

1
qu:{xGC:(y—x,A:r)—l—r—(y—x,J:U—szO, vy € C}.

n

Assume that © := F(T) N VI(A,C) # 0. For an initial point x; € C let {z,} be the
sequence generated by

Up = Fp, Tn, (3.1)

Tpy1 = HoJ  HanJu, + (1 — an)Jz), '
where z, € T(xy), for all n > 1. Assume that {ay,} is a sequence in [0,1] such that
im infy 00 an(l — ) > 0 and {r,} C [d,00) for some d > 0. Then {x,} converges
strongly to some point of ©.

Proof. Let T be a relatively nonexpansive multi-value mapping. Since © := F(T) N
VI(A,C) is nonempty, closed and convex, for any p € ©, we have

o(p, eI HanJun + (1 — an)Jz))

o(p, T (anJun + (1 — an)Jzn))

Ipl? = 2(p, anJup + (1 — a) J2n) + |lanJun + (1 — ap) T 2|2
IpII* = 200 (p, Jup) — 2(1 = an)(p, Jzn) + llanJun||* + [|(1 = an) Tz |2
anﬁb(pa un) + (1 - an)¢(p7 Zn)

and(p, un) + (1 — an)d(p, zn)

o(p, Fr,zn) + (1 — an)o(p, 7n)

and(p, zn) + (1 — an)d(p, Tn)

d(p, Tn)-

¢(p7 xn-l—l)

I VAN I VAN (I VAN I VAR



NI TUMINGFEiInG nounsgiindmiulymenunisnisuusiiug

Ui 19 adud 1 unsaw - dquiey 2559

a158 lvesnl uavauy

Thaksin.J., Vol.19 (1) January-June 2016

(3.2)

That is {¢(p, zy)} is non-increasing. Hence {¢(p,zy,)} is a convergence sequence. So
im ¢(p, z,,) exists. Follow by (1.3), {x, } is bounded and so are {z,} and {uy,}. So, there

n—oo

exists 11 = sup,>1{l|znll; [[2nll; [[unll} such that z,, 2z, € B,(0) for all n > 1. Since E is a
uniformly smooth Banach space, E* is a uniformly convex Banach space. By Lemma (1.7),
there exists a continuous, strictly increasing and convex function h : [0, 00) — [0, c0) with

h(0) = 0 such that

+(1- an)JanQ
+ (1 - an)||Jzn||2

O(ptnt1) = o(p,Mod HanJun + (1 — an)Jz))
< o(p, J N anJun + (1 — an)Jzn))
= |IplI* = 2an(p, Jun) — 2(1 — au)(p, Tz0) + |lanJ 2
< Ipll® = 2an(p, Jun) = 2(1 = an)(p, T2n) + an | Jun|?
—an (1 — an)h(||Jun — J2n|)
= (P, un) + (1 — an)o(p, zn) — an(l — an) (|| Jun — Jzn|)
< and(p.un) + (1 — an)d(p, un) — an(l — an)h(||Jun — Jznl|)
< 0P un) — an(l — an)h(|| Jun — Jzl|)
and so

an(l — an)h(|[Jun — Jzn|) < é(p, 2n) — (P, Tnt1)-

Since U_)m d(p, up) exists and liminf, 00 an(l — ay) > 0, we have
Uim A(||Jun — J2,]]) =0
n—oo

hence

im || Jun — Jzn|| = 0.
n—oo

Since J~Lis uniformly norm-to-norm continuous on bounded sets, we have

im |Jup — 2] = 0.
n—oo
Let rg = sup,,>1{l|@all; lunll}, from lemma(1.6) and (3.3) , we have

Since u, = F,. x, and p € O, by lemma (1.8), we get
gllzn — unll) < d(zn, un) < G(p, 7n) — (P, un).

Since U_)m o(p, z,,) exists and following from (3.2), we have
n—oo

n“_>moo g(llzn — unll) =0
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From property of g, we have that

im ||z — unl|) = 0. (3.10)

n—oo

By using the triangle inequality, we obtain
|20 — znll < lzn — unll+ < [Jup — 2n]. (3.11)
From (3.6) and (3.10), we get

im [|zn — 2a)) = 0. (3.12)

n—oo

Since d(xp, Txy) < ||xn — 2n]|, we have

im d(zy, Tx,) = 0. (3.13)

n—oo

Let p € © and r > 0. Then there exists p + rk € ©, whenever ||k|| < 1. Thus, by (1.4), for
any u € ©, we have

¢(u7 xn) = Cb(xn—&—la mn) + ¢(u7 xn—kl) + 2<J7n—|—1 —u, Jxpy — an+1>7 (3.14)

which implies

1 1
5((25(”, Tp) — ¢(’LL, :EnJrl) = §¢(xn+1a wn) + <xn+1 — U, Sy — an+1>- (3.15)
Also, we have
(Tn+1 =P, JTn — JTny1) = (Tny1 — (P +7k) + 7k, JTn — JTnt1)
= (zpt1— (p+7rk), Jo, — JTpi1) (3.16)

+r(k, Jxy, — Jxpi1).
Thus it follows from (3.2), (3.15) and (3.16), we have
0 < (xpy1— (p+rk), Jo, — Jopi1) + éqﬁ(xnﬂ,:rn).
From (3.15),
Pk, T = Joaa) < (onss =D Jan — Janin) + 5 (i1, )

_ %(gb(p, Tn) — O(D, Tny1))

hence

(b Tz = Jania) S 5 (0, 2) = 0 Tns).
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Since ||k|| < 1, we obtain

1
12 = Jniall < 5 (6P 2n) = G(D, Tn+1))- (3.17)
For all m,n > 1 with n > m, we have
| Jem — Tzall < SIS i — T

LS ((p, i) — G(p, Tig1)) (3.18)

Since {¢(p,zn)} converges, {Jz,} is a Cauchy sequence. Since E* is complete, {Jx,}
converge strongly to some point in E*. Since E* has a Fréchet differentiable, J~! is norm-
to-norm continuous on E*. Then {z,} converges strongly to some point ¢ in C. Thus,
from (3.13), we have ¢ € F(T). From (3.10) and .J is norm-to-norm continuous on E, it
follows that

[ IA

im || Jz, — Jupl| = 0. (3.19)

n—oo
Thus, from (3.19), for all r,, > 0, we obtain

lim za=Junl _ o (3.20)

n—o0 Tn ’
Thus, from F,, x, = u, € C, we have that

(U — Up, Aup) + %(v — Up, JUup — Jzp) >0 (3.21)
forall v € C, that is,

Ju, — J
(V= Un, Aup) + (U — up, M> >0
Tn

forallv € C. Forall ¢t € (0,1), define v; = tv + (1 — t)g. Then v, € C and it follows from
(3.21) that
<Ut — Un, AUn) + <Ut — Unp, Junri_nl]%w >0

forallv € C and
(Vg — up, Avy) > (v — Up, Av) — (Vg — Up, Aup) — (v — Up, m) >0 (3.22)

Tn
forall v € C. By (3.10) and (3.22), we have J“”T% = 0. Since A is monotone, we have

(Vg — U, Avy) > (v — Up, Avy — Auy) >0

and
Uim (vy — up, Avy) = (vg — q, Av) > 0.
n—oo
Taking ¢t — 0, it follows that
<7) -4, AQ> 2 0

forallv e Candso g € VI(A,C). Therefore, ¢ € F(T) NV I(A,C). This completes the
proof. O
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