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Euclidean Algorithm : Matrix Method

1. บทนำ
	 การหาตัวหารร่วมมากของจำนวนเต็มสองจำนวน a และ b ที่ไม่เป็นศูนย์พร้อมกัน ด้วยวิธีการแบบเมทริกซ์       

 (matrix method) เริ่มด้วย

 	 	 	 	 	 	 1	 0	 a

	 	 	 	 	 	 0	 1	 b

โดยใช้วิธีการดำเนินการตามแถวเบื้องต้น (elementary row operations: ERO) สามารถที่จะหาตัวหารร่วมมาก (a, b) 

และเขียน  (a, b)   เป็นผลรวมเชิงเส้นได้จากเมทริกซ์ที่เศษตัวสุดท้ายไม่เป็นศูนย์ โดยผลลัพธ์ที่ได้จะอยู่ในรูปของ (a, b)  =  

r = ax +by สำหรับ x, y และ r เป็นจำนวนเต็มบางค่า นอกจากนี้มีการใช้โปรแกรมภาษาซีช่วยในการวิเคราะห์ในการหา 

ตัวหารร่วมมาก ตลอดจนผลรวมเชิงเส้นของจำนวนเต็มสองจำนวน

][
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2. พื้นฐานความรู้
	 ในการศึกษาเรื่องขั้นตอนวิธีแบบยุคลิด : วิธีการแบบเมทริกซ์ เป็นเรื่องที่เกี่ยวข้องกับการหาตัวหารร่วมมากและ

ผลรวมเชิงเส้นของจำนวนเต็มสองจำนวน  จึงจำเป็นที่จะต้องใช้บทนิยามและทฤษฎีบทที่เกี่ยวข้องเพื่อเป็นประโยชน์ใน  

การศึกษาและเป็นแนวทางในการพิสูจน์ ดังต่อไปนี้

บทนิยาม 2.1  ให้  a และ b เป็นจำนวนเต็มโดยที่      b ≠ 0 และถ้ามีจำนวนเต็ม c ที่ทำให้   a = bc แล้วเรา
กล่าวว่า   b หาร a  ลงตัว (b divides a) และจะเขียนด้วย  b ⎥  a  ถ้า  b หาร a  ไม่ลงตัว จะเขียนด้วย b  ⎥  a   

ทฤษฎีบท 2.2 ขั้นตอนวิธีการหาร  (Division Algori thm) ให้    a  และ b   เป็นจำนวนเต็ม โดยที่  b  >   0 

จะได้ว่ามีจำนวนเต็ม  q และ r   คู่หนึ่งและคู่เดียวที่ 

	 	 	 	 a = bq +r,  0  ≤  r  <  b
 

จำนวนเต็ม  q  และ   r   เรียกว่า ผลลัพธ์หรือผลหาร (quotient) และเศษหรือเศษเหลือ (remainder) ตามลำดับที่ได้

จากการหาร  a  ด้วย  b 

บทแทรก 2.3  ถ้า  a  และ  b  เป็นจำนวนเต็ม โดยที่  b ≠ 0 จะได้ว่ามีจำนวนเต็ม  q  และ  r  คู่หนึ่งและคู่เดียวเท่านั้นที่
 

บทนิยาม 2 .4  ให้  a  และ b  เป็นจำนวนเต็มที่ ไม่ เป็นศูนย์พร้อมกัน  ตัวหารร่วมมาก  (grea tes t  common 

divisor) ของ a และ b เขียนแทนด้วย (a, b)  คือ จำนวนเต็มบวก d ซึ่งมีสมบัติต่อไปนี้

	 1.   d ⎥  a    และ   d ⎥  b
	 2.  ถ้า   c ⎥  a   และ    c ⎥  b    แล้ว  c ⎥  d

บทนิยาม 2.5   ให้   a  และ  b   เป็นจำนวนเต็มซึ่งต่างไม่เท่ากับศูนย์  ถ้า   (a, b) = 1   เรากล่าวว่า   a  และ  b   เป็น

จำนวนเฉพาะสัมพัทธ์ (relatively prime)

ทฤษฎีบท 2.6   ให้  a  และ  b  เป็นจำนวนเต็ม โดยที่  a  และ  b  ไม่เป็นศูนย์พร้อมกันจะได้ว่า มีจำนวนเต็ม x และ y ที่ 

	 	 	 	 (a, b) = ax + by
  

ทฤษฎีบท 2.7 ให้ a และ b เป็นจำนวนเต็มซึ่งต่างไม่เท่ากับศูนย์     จะได้ว่า a และ b เป็นจำนวนเฉพาะสัมพัทธ์

ก็ต่อเมื่อมีจำนวนเต็ม x และ y ที่  1 = ax + by

ทฤษฎีบท 2.8  สมการไดโอแฟนไทน์เชิงเส้น     ax + by = c มีรากก็ต่อเมื่อ d ⎥   c   โดยที่   d = (a, b)  ถ้า  x0 , y0  

เป็นรากเฉพาะรากหนึ่งแล้วรากทั่วไปจะอยู่ในรูป 

				    x = x0 + (b / d)t,   y = y0 - (a / d)t

โดยที่  t  เป็นจำนวนเต็มใดๆ
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ทฤษฎีบท 2.9   ถ้า   a  =  bq + r  แล้ว  (a,b) = (b,r)

การพิสูจน์  ให้  d = (a,b)  และ  dʹ  = (b,r)  จาก  d ⎥  a  และ   d ⎥  b  จะได้   d  ⎥  (a - qb)  นั่นคือ  d ⎥  r  ดังนั้น  d ⎥  dʹ 
จาก  dʹ ⎥  b และ  dʹ ⎥  r  จะได้  dʹ ⎥ (qb + r)  นั่นคือ   dʹ ⎥  a  ดังนั้น  dʹ ⎥  d  เพราะฉะนั้น dʹ  = d  นั่นคือ   (a,b) = (b,r)
														                    

เมทริกซ์และระบบสมการเชิงเส้น
	 กำหนดระบบสมการเชิงเส้นที่มี  m  สมการ และมีตัวแปร  n  ตัว คือ  x1,x2,...,xn  ดังนี้
	 	 	 	 a11x1 + a12x2 + ... + a1nxn   =  b1

				    a21x1 + a22x2 + ... + a2nxn   =  b2	 	 	 (1)

	 	 	 	 am1x1 + am2x2 + ... + amnxn   =  bm
                                             

ระบบสมการเชิงเส้นนี้มีความสัมพันธ์กับเมทริกซ์ดังนี้ สมมติให้

	 	 	 	 a11           a12     ...    a1n		  	 x1		  b1

				    a21           a22     ...    a2n		  	 x2	 	 b2

				    am1           am2     ...    amn	 	  xn	 	 bm

จะพบว่า

 	 	 a11           a12     ...    a1n	 x1		  a11 x1    +   a12 x2  +  ...  +   a1n xn   	 b1

		  a21           a22     ...    a2n	 x2	 	 a21 x1    +   a22 x2  +  ...  +   a2n xn   	 b2

	 	 am1           am2     ...    amn	 xn	 	 am1 x1    +   am2 x2  +  ...  +   amn xn   	 bm

ดังนั้น ระบบสมการเชิงเส้น (1) สามารถเขียนให้อยู่ในรูปสมการของเมทริกซ์ A, X และ B ได้ดังนี้

	 	 	 	 	 	 	 AX = B	 	 (2)

โดยที่ เมทริกซ์ A, X และ B มีชื่อเรียกดังนี้  A เรียกว่า เมทริกซ์สัมประสิทธิ์  (coefficient matrix) X เรียกว่า

เมทริกซ์ตัวแปร (variable matrix) และ B เรียกว่า เมทริกซ์ค่าคงตัว (constant matrix)

	 ต่อไป   การหาคำตอบของระบบสมการเชิงเส้น (1) จะพิจารณาสมการของเมทริกซ์  (2) แทนเมทริกซ์

ที่มีส่วนสำคัญในการหาคำตอบของระบบสมการเชิงเส้นอีกหนึ่งเมทริกซ์คือ เมทริกซ์ที่เกิดจาก A และ B ซึ่งเรียกว่า  

เมทริกซ์แต่งเติม  (augmented matrix)  เขียนแทนด้วยสัญลักษณ์   [A ⎥ B]  ซึ่งนิยามดังนี้                                                   

A = ,  X = ,  B =[ ] [ ] [ ]
AX = = = B[ ] [ ] [ ] = [ ]
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	 	 	 	 	 	 a11	 a12    ...   a1n	  b1

						      a21	 a22    ...   a2n	  b2

	 	 	 	 	 	 am1	 am2    ...   amn	  bm

	 การแก้ระบบสมการ เราจะใช้การดำเนินการตามแถวเบื้องต้น (elementary row operations:ERO) กับ 

เมทริกซ์แต่งเติม ดังนี้

	 1.	 การคูณแถวใดแถวหนึ่งของเมทริกซ์แต่งเติมด้วยค่าคงตัวที่ไม่เป็นศูนย์  (cRi)

	 2.	 การสลับระหว่างแถวสองแถวของเมทริกซ์แต่งเติม  (Ri    ↔     Rj)

	 3.	 การบวกแถวหนึ่งของเมทริกซ์แต่งเติมด้วยผลคูณของแถวอื่นกับค่าคงตัว  (Ri  +   cRi)

	 โดยใช้การดำเนินการตามแถวเบื้องต้น จากเมทริกซ์ (3) จะได้

	 	 	 	 	 	 [Aʹ ⎥ Bʹ]		 	 (4)

                                                                        

ซึ่งเมทริกซ์ (4) สมมูลกับเมทริกซ์ (3) เขียนแทนด้วย

	 	 	 	 	 	 [A ⎥ B]  ↔  [Aʹ ⎥ Bʹ]	 	 (5)

                                                               

และสมการของเมทริกซ์

                                      		     AʹX    =  B ʹ				    (6)

                          

สมมูลกับ   AX  =  B   นั่นคือมีรากชุดเดียวกัน

3. ผลลัพธ์หลัก
	 ก่อนอื่นจะกล่าวถึงขั้นตอนวิธีแบบยุคลิด (Euclidean Algorithm) ซึ่งจะมีการนำไปใช้บางส่วนในวิธีการ

แบบเมทริกซ์ โดยจะเริ่มต้นด้วยการ ให้ a และ b เป็นจำนวนเต็มสองจำนวนที่ต้องการหาตัวหารร่วมมาก เนื่องจาก (⎥a⎥, 

⎥b ⎥)   =   (a,b)   และ  (a,b) = (b,a) จึงไม่เป็นการเสียนัยทั่วไปที่จะสมมติ ให้  a  ≥ b > 0 เริ่มโดยใช้ขั้นตอนวิธีการหารเข้ากับ 

a และ b จะได้

	 	 	 a  =  bq1   +  r1   ,   0  ≤  r1  <  b
 

สำหรับจำนวนเต็ม  q1  และ r1  บางค่า  ถ้า  r1  =  0  หยุด จะได้  b ⎥ a  และ   (a, b) = b
ถ้า  r1 ≠  0  หาร  b  ด้วย  r1  โดยขั้นตอนวิธีการหารจะมีจำนวนเต็ม   q2   และ   r2  บางค่าที่

  	 	 	 b  =  r1q2   +  r2   ,   0  ≤  r2  <  r1

ถ้า   r2  = 0  เราหยุดเพียงแค่นี้  แต่ถ้า   r2  ≠  0  เราทำต่อทำนองเดียวกับข้างต้น จะได้

 			   r1  =  r2q3   +  r3   ,   0  ≤  r3  <  r2

[A ⎥ B] = (3)[ ]
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ทำกระบวนการนี้ต่อเนื่องไปจนกระทั่งได้ เศษเป็นศูนย์   ( เศษเป็นศูนย์จะต้องเกิดขึ้นอย่างแน่นอน   เพราะ

b >  r1  >  r2  > ...  ≥ 0) สมมติว่าได้เศษเป็นศูนย์ในขั้นที่   n + 1 :
	 	 	 	 	 	 a  =  bq1 + r1 ,	 0   ≤  r1  < b
	 	 	 	 	 	 b  =  r1q2 + r2 ,	 0   ≤  r2  < r1

						      r1  =  r2q3 + r3 ,	 0   ≤  r3  < r2

					          rn-2     =  rn-1qn + rn ,	 0   ≤  rn  < rn-1
			                          rn-1     =  rnqn+1 + 0 

 

	 เราจะแสดงว่า เศษตัวสุดท้ายที่ไม่เป็นศูนย์ ในที่นี้คือ   rn   เป็นตัวหารร่วมมากของ a และ b การพิสูจน์

ข้อความดังกล่าวอาศัยทฤษฎีบท 2.9 ได้ว่า จากระบบสมการดังกล่าวข้างต้นเราจะได้

	 	 	 (a, b) = (b, r1) = (r1,r2) = ... = (rn-1,rn) = (rn,0) = rn
 

นั่นคือตัวหารร่วมมากของ  a  และ  b  คือ  เศษตัวสุดท้ายที่ไม่เท่ากับศูนย์ในขั้นตอนวิธีแบบยุคลิด

	 จากทฤษฎีบท 2.6  (a, b) สามารถเขียนได้เป็นผลรวมเชิงเส้นในรูป ax + by ซึ่งเราสามารถหาค่า x และ y ได้โดย

การย้อนกลับไปดูขั้นตอนวิธีแบบยุคลิดและใช้กระบวนการทำย้อนกลับจากบรรทัดรองสุดท้ายในขั้นตอนวิธีดังกล่าว

เราได้

							       rn  =  rn-2  -   qn rn-1

ต่อไปหา  rn-1  จากสมการที่ถัดขึ้นไปแล้วแทนค่าลงในสมการข้างต้นนี้ จะได้   

					            rn  =  rn-2  -   qn  (rn-3  - qn-1 rn-2)

						       =  (1 + qn qn-1)  rn-2  + (- qn ) rn-3
 

ซึ่งจะได้ว่า   rn   เป็นผลรวมเชิงเส้นของ   rn-2   และ   rn-3 ทำกระบวนการย้อนกลับแบบเดียวกับข้างต้นจนถึง

สมการแรก ในที่สุดเราสามารถขจัดเศษ rn-1 , rn-2 ,..., r2, r1  ทีละขั้นจนกระทั่งได้   rn =   (a, b)   เป็นผลรวมเชิงเส้นของ 

a และ b :

 						      rn  =   (a, b)  =  ax  +  by

สำหรับจำนวนเต็ม  x, y  บางค่า
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ตัวอย่าง 3.1 ในการหา (507,391)   และเขียนเป็นผลรวมเชิงเส้นของ 507 และ 391 โดยขั้นตอนวิธีการหาร เราจะได้ระบบ

สมการ

	 	 	 	 	 	 	 507 = 391 . 1 + 116

	 	 	 	 	 	 	 391 = 116 . 3 + 43

	 	 	 	 	 	 	 116 = 43 .  2 + 30

	 	 	 	 	 	 	   43 = 30 .  1 + 13

	 	 	 	 	 	 	   30 = 13 .  2 + 4

	 	 	 	 	 	 	   13 = 4 .  3 + 1

	 	 	 	 	 	 	     4 = 1 .  4 + 0

 

เศษตัวสุดท้ายในที่นี้คือ 1 ดังนั้น 1 เป็นตัวหารร่วมมากของ 507 และ 391 นั่นคือ  1 =  (507,391)

	 ในการเขียน 1 เป็นผลรวมเชิงเส้นของ 507 และ 391 เราเริ่มจากบรรทัดรองสุดท้ายในระบบสมการ

ข้างต้นและขจัดเศษ 4, 13, 30, 43, 116 ทีละขั้น จะได้

	 	 	 	 	 	 1	 = 13- 4 . 3

	 	 	 	 	 	 	 = 13 - 3 (30 - 13 . 2)

	 	 	 	 	 	 	 = 7 . 13 - 3 . 30

	 	 	 	 	 	 	 = 7 (43 - 30 . 1) - 3 . 30

	 	 	 	 	 	 	 = 7 . 43 - 10 . 30

	 	 	 	 	 	 	 = 7 . 43 - 10 (116 - 43 . 2)

	 	 	 	 	 	 	 = 27 . 43 - 10 . 116

	 	 	 	 	 	 	 = 27 (391 - 116 . 3) - 10 . 116

	 	 	 	 	 	 	 = 27 . 391 - 91 . 116

	 	 	 	 	 	 	 = 27 . 391 - 91 (507 - 391 . 1)

	 	 	 	 	 	 	 = 118 . 391 - 91 . 507

 

ดังนั้น   1 = (507,391) = 507x + 391yโดยที่   x = -91 และ  y = 118

กระบวนการวิธีการแบบเมทริกซ์
	 ให้ a และ b เป็นจำนวนเต็มสองจำนวนที่ต่างไม่เท่ากับศูนย์ที่ต้องการหาตัวหารร่วมมาก โดยเริ่มที่เมทริกซ์ 

 	 	 	 	 	 	 	   1	 0	 a

	 	 	 	 	 	 0	    1	         b

สมมติ ให้   a ≥ b > 0 จากทฤษฎีขั้นตอนวิธีการหาร  จะมีจำนวนเต็ม q1 และ r1 ที่  a = bq1 +  r1 โดยที่  0 ≤ r1 < b นำ 

-q1 คูณแถว R2 บวกกับแถว  R1 นั้นคือ แถวที่ 1 เปลี่ยนเป็น  R1 +(-q1) R2 ดังนั้น จะได้  r1 = a - bq1 และได้เมทริกซ์ที่สมมูล

กันคือ

][
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   	 	 	 	 	 	 	   1	 -q1	 r1

	 	 	 	 	  	 0	     1	         b

ถ้า   r1 = 0 หยุด  จะได้   (a, b) = b  และผลรวมเชิงเส้นคือ  ax + by = b (x = 0, y = 1)  ถ้า   r1 ≠ 0 จากทฤษฎีขั้นตอนวิธีการ

หาร  จะมีจำนวนเต็ม q2    และ r2  ที่ b =r1q2 + r2 โดยที่ 0 ≤ r2 < r1 นำ-q2 คูณแถว  R1 บวกกับแถว R2  นั้นคือ

 แถวที่ 2 เปลี่ยนเป็น  R2 + (-q2) R1  ดังนั้น จะได้ r2 = b - r1 q2   และได้เมทริกซ์ที่สมมูลกันคือ

	   	 	 	 	 	 	     1	      -q1	     r1

	 	 	 	 	  	 -q2	     1+ q1 q2	     r2

ถ้า  r2 = 0 หยุดเพียงแค่นี้  จะได้ว่า  (b,  r1) = r1  และผลรวมเชิงเส้นคือ   ax + by =  r1 (x = 1, y = -q1 )  ถ้า  r2 ≠ 0 จากทฤษฎี

ขั้นตอนวิธีการหาร   จะมีจำนวนเต็ม q3 และ r3 ที่ r1 = r2q3 + r3  โดยที่ 0 ≤  r3 <  r2  นำ -q3 คูณแถว  R2 บวก

กับแถว  R1 นั้นคือ แถวที่ 1 เปลี่ยนเป็น R1 + (-q3 )R2 ดังนั้น จะได้  r3 = r1- r2q3 และได้เมทริกซ์ที่สมมูลกันคือ

	 	 	 	 	 1 + q2 q3        -q1	    -q3   (1 + q1 q2)	     r3
	 	 	 	 	    -q2                               1 + q1 q2)	     r2

	 ทำกระบวนการนี้ต่อเนื่องไปจนกระทั่งได้เศษเป็นศูนย์   (เศษเป็นศูนย์จะต้องเกิดขึ้นอย่างแน่นอน เพราะ  

b > r1 > r2>...≥ 0 ) สมมติว่าได้เศษเป็นศูนย์ในขั้นที่  n + 1 : ให้
 	 	 	 	 	 	   1	 0	 a	       1	 0	 bq1 + r1
	 	 	 	 	 	   0	 1	 b	       0	 1	      b 

จะได้  

	 	 	 	 	 	  	 1     -q1          r1                  1        -q1                          r1

	 	 	 	 	 	 	 0       1        b              0         1            r1 q2 + r2

							       1               -q1               r1                     1        -q1                          r2 q3 + r3
	 	 	 	 	 	 	 -q2       1 + q1q2        r2              -q2         1+ q1q2             r2

							       xn-1           yn-1               rn-1	 xn-1           yn-1                          rn-1
							       xn-2           yn-2               rn-2	 xn-2           yn-2                  rn-1 qn + rn

							       xn-1           yn-1               rn-1	 xn-1           yn-1                  rnqn+1 + 0

							       xn              yn                  rn	 xn              yn                              rn

							       xn+1           yn+1               0						    

							       xn              yn                     rn

][

][

][

][ ][M1 = =

R1 + (-q1) R2

	 M1 ↔ M2	 	 =

R2 + (-q2) R1

	 M2 ↔ M3	 	 =

R1 + (-qn-1) R2

	 Mn-2 ↔ Mn-1	 =

R2 + (-qn) R1

	 Mn-1 ↔ Mn	 =

R1 + (-qn+1) R2

	 Mn ↔ Mn+1	 =

][ = [ ]

[ ]=[ ]

[ ] = [ ]

[ ] = [ ]

[ ]
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สำหรับ   xn+1 , xn , xn-1, yn+1, yn, yn-1 เป็นจำนวนเต็มบางค่า
	 ดังนั้น จากขั้นตอนวิธีแบบยุคลิด ถ้าเศษเป็นศูนย์ในขั้นที่ n + 1  จะได้ว่า ตัวหารร่วมมากของ a และ b คือ 

เศษตัวสุดท้ายที่ไม่เป็นศูนย์ ในที่นี้ คือ  (rn) จากเมทริกซ์

						      	 xn+1           yn+1               0						    

							       xn              yn                     rn

เราสามารถเขียน   rn   เป็นผลรวมเชิงเส้นของ  a  และ  b  ได้ดังนี้

 	 	 	 	 	 axn  +  byn   =   rn
โดยที่   rn  =  (a, b)  และ xn  , yn  เป็นจำนวนเต็มบางค่า

ตัวอย่าง 3.2  ในการหา   (507,391) และเขียนเป็นผลรวมเชิงเส้นของ  507  และ  391  เราเริ่มจาก

							       1       0        507

	 	 	 	 	 	 	 0       1        391

จะได้ว่า

 	 	 	 	 	 	 	 1       -1       116

	 	 	 	 	 	 	 0        1        391

	 	 	 	 	 	 	  1        -1       116

	 	 	 	 	 	 	 -3         4        43

	 	 	 	 	 	 	  7       -9         30

	 	 	 	 	 	 	 -3        4         43

	 	 	 	 	 	 	   7       -9         30

	 	 	 	 	 	  	 -10      13        13

	 	 	 	 	 	 	  27       -35       4

	 	 	 	 	 	 	 -10        13       13

	 	 	 	 	 	 	  27        -35        4

	 	 	 	 	 	 	 -91        118       1

[ ]

[ ]M1 =

R1 + (-1) R2

	 M1 ↔ M2	 	 =

R2 + (-3) R1

	 M2 ↔ M3	 	 =

R1 + (-2) R2

	 M3 ↔ M4		 =

R2 + (-1) R1

	 M4 ↔ M5		 =

R1 + (-2) R2

	 M5 ↔ M6		 =

R2 + (-3) R1

	 M6 ↔ M7		 =

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]
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R1 + (-4) R2

	 M7 ↔ M8		 =

	 	 	 	 	 	 	  391        -507        0

	 	 	 	 	 	 	  -91        118          1

	 เศษตัวสุดท้ายในที่นี้คือ 1 ดังนั้น 1 เป็นตัวหารร่วมมากของ 507 และ 391 และเขียน 1 เป็นผลรวมเชิงเส้น

ของ 507 และ 391 ได้ว่า 

 						      507 . (-91) + 391 . (118) = 1

	 เมื่อเราทราบวิธีการหาตัวหารร่วมมากและผลรวมเชิงเส้น ด้วยวิธีการแบบเมทริกซ์แล้ว ต่อไปเราจะนำ

ผลลัพธ์ทั้งสองผลลัพธ์นี้  ไปประยุกต์สู่สมการไดโอแฟนไทน์   ax + by = c   เพื่อที่จะหารากทั่วไปของสมการ

ไดโอแฟนไทน์เชิงเส้น

ตัวอย่าง 3.3  ในการหารากทั่วไปของสมการไดโอแฟนไทน์เชิงเส้น 

	 	 	 172x + 20y = 1000

โดยใช้วิธีการแบบเมทริกซ์ หา  (172,20)  โดยให้

	 	 	 	 	 	 	  1        0        172

	 	 	 	 	 	 	  0        1         20

จะได้

 	 	 	 	 	 	 	 1        -8        12

	 	 	 	 	 	 	 0         1          20

	 	 	 	 	 	 	  1        -8        12

	 	 	 	 	 	 	 -1         9          8

	 	 	 	 	 	 	  2       -17         4

	 	 	 	 	 	 	 -1         9          8

	 	 	 	 	 	 	  2       -17        4

	 	 	 	 	 	 	 -5        43        0

ดังนั้น  (172,20) = 4  เนื่องจาก  4 ⎜1000 สมการที่ให้มาหารากได้ เขียน 4 เป็นผลรวมเชิงเส้นของ 172 และ 20 ได้ว่า
	 	 	 	 	 	 	 172 . (2) + 20 . (-17) = 4 	 	 	

คูณความสัมพันธ์นี้ด้วย 250 เราได้

	 	 	 	 	 	 	 1000 = 172 . (500) + 20 . (-4250)

[ ]

M1 = [ ]

R1 + (-8) R2

	 M1 ↔ M2	 	 =

R2 + (-1) R1

	 M2 ↔ M3	 	 =

R1 + (-1) R2

	 M3 ↔ M4		 =

R2 + (-2) R1

	 M4 ↔ M5		 =

[ ]

[ ]

[ ]

[ ]
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ดังนั้น  x = 500  และ  y = -4250  เป็นรากเฉพาะรากหนึ่ง สำหรับรากทั่วไปจะเขียนได้ในรูป

	 	 x = 500 +           t  = 500 + 5t

	 	 y = -4250 -             t  = -4250 - 43t

 

เมื่อ  t  เป็นจำนวนเต็มใดๆ

	 ในบางครั้งเราต้องการหารากที่เป็นบวกนั่นคือ ต้องการ  x > 0 และ y > 0 ในกรณีนี้ต้องหา t ที่สอดคล้องกับ

อสมการ 

				    x0 +           t > 0 ,            y0  -           t  > 0

 

จากตัวอย่าง 3.3  ถ้าต้องการหารากที่เป็นจำนวนบวก  เราต้องหา  t  ที่สอดคล้องกับอสมการ

ซึ่งพบว่า  -98.8 > t > -100 เพราะฉะนั้นสมการมีรากที่เป็นบวกเพียงรากเดียวคือ x = 5, y = 7 ที่ สมนัยกับ t = -99

	 มีข้อที่ควรสังเกตอีกอย่างหนึ่งคือ แนวคิดของตัวหารร่วมมากสามารถขยายไปยังกรณีที่มีจำนวนเต็มมากกว่า

สองจำนวนได้    ในกรณีที่มีจำนวนเต็มสามจำนวนกล่าวคือ a, b และ c ที่ต่างไม่เท่ากับศูนย์  ตัวหารร่วมมาก    (a , b , c)

ให้นิยามเป็นจำนวนเต็มบวก  d  ที่มีสมบัติดังต่อไปนี้

	 (1)	 d เป็นตัวหารของ a, b และ c

	 (2)	 ถ้า e เป็นตัวหารใดๆ ของ a, b และ c แล้ว  e ⎜d

	 ตัวอย่างเช่น

 	 	 (39, 42, 54) = 3,   (49, 210, 350) = 7,  (63, 77, 99) = 1

	 จากวิธีการหาตัวหารร่วมมากของจำนวนเต็มสองจำนวน เราสามารถนำมาใช้หาตัวหารร่วมมากของ

จำนวนเต็มสามจำนวนกล่าวคือ a, b และ c เมื่อกำหนดให้  a ≥ b ≥  c > 0 โดยเริ่มที่เมทริกซ์ดังนี้
	 	 	 	 	 	 1     0     0    a

	 	 	 	 	 	 0     1     0    b

	 	 	 	 	 	 0     0     1    c

ใช้การดำเนินการตามแถวเบื้องต้นทีละคู่จนได้เศษตัวสุดท้ายไม่เป็นศูนย์

	 กรณีทั่วไป คือการหา ห.ร.ม. ของจำนวนเต็ม n จำนวน ดูเพิ่มเติมได้จาก [2].

4
20( )

( )4
172

d
b

d
a( ) ( )

[ ]



วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

74

Thaksin.J., Vol.11 (1) January - June 2008

ขั้นตอนวิธีแบบยุคลิด : วิธีการแบบเมทริกซ์
ประพจน์ อนันตวรพจน์ และคณะ

ตัวอย่าง 3.4  ในการหา  (99, 77, 63) เราเริ่มจาก

 

	 	 	 	 	 	 	 1     0     0      99

							       0     1     0      77

							       0     0     1      63

จะได้

	 	 	 	 	 	 	 1     0     0         99

	 	 	 	 	 	 	 0     1     -1       14

							       0     0     1         63

	 	 	 	 	 	 	 1      0      0        99

	 	 	 	 	 	 	 0      1     -1       14

	 	 	 	 	 	 	 0     -4      5        7

	 	 	 	 	 	 	 1      0      0         99

	 	 	 	 	 	 	 0      9     -11       0

	 	 	 	 	 	 	 0     -4      5         7

	 	 	 	 	 	 	 1      56      -70         1

	 	 	 	 	 	 	 0       9      -11          0

	 	 	 	 	 	 	 0     -4         5           7

	 	 	 	 	 	 	 1        56       -70         1

	 	 	 	 	 	 	 0         9        -11         0

	 	 	 	 	 	 	 -7     -396      495        0

 

         	 เศษตัวสุดท้ายในที่นี้คือ 1 ดังนั้น 1 เป็นตัวหารร่วมมากของ 99, 77 และ 63 และเขียน 1 เป็นผลรวม

เชิงเส้นของ 99, 77 และ 63 ได้ว่า

 	 	 	 	 	 	 99 . (1) + 77 . (56) + 63 . (-70) = 1

M1 = [ ]

R2 + (-1) R3

	 M1 ↔ M2	 	 =

R3 + (-4) R2

	 M2 ↔ M3	 	 =

R2 + (-2) R3

	 M3 ↔ M4		 =

R1 + (-14) R3

	 M4 ↔ M5		 =

R3 + (-7) R1

	 M5 ↔ M6		 =

[ ]

[ ]

[ ]

[ ]

[ ]
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4. ขั้นตอนวิธี (Algorithm) 
	 จากที่กล่าวมาข้างต้นทั้งหมด เพียงพอที่จะสร้างขั้นตอนวิธีแบบยุคลิดโดยวิธีการแบบเมทริกซ์ได้ดังนี้

	 	 	 	 	 	 	 1          0            a

	 	 	 	 	 	 	 0          1            b

 

โดยเริ่มจาก กำหนดค่าเริ่มต้น a และ b เป็นจำนวนเต็มที่ไม่เป็นศูนย์พร้อมกัน และทำซ้ำโดยใช้การดำเนินการตาม

แถวเบื้องต้น (elementary row operations : ERO) บนเมทริกซ์ และตรวจสอบเศษตัวสุดท้ายในขั้นที่  n + 1  ว่าเป็น

ศูนย์หรือไม่ โดยใช้ขั้นตอนวิธีแบบยุคลิด ถ้า  rn+1 = 0 จะได้ว่า   rn  คือตัวหารร่วมมากของ a และ b และผลรวมเชิงเส้นของ 

a และ b คือ   axn + byn = rn มิฉะนั้นให้ทำซ้ำต่อไป ซึ่งเราสามารถเขียนเป็นขั้นตอนวิธี (algorithm) ได้ดังนี้

ให้ a และ b เป็นจำนวนเต็มที่ต้องการหาตัวหารร่วมมาก

วัตถุประสงค์:  	 ต้องการหาตัวหารร่วมมากของ  a, b และเขียนผลรวมเชิงเส้นของ  a, b

ข้อมูลเข้า :	 	 ค่าเริ่มต้น  a, b 

                	 	 เมทริกซ์   2 x  3 โดย  AX = B, M1  =

ข้อมูลออก :		 ตัวหารร่วมมากของ  a  และ  b 

	 	 	 ผลรวมเชิงเส้น  ax + by = r  โดยที่  x  และ  y  เป็นจำนวนเต็ม

ขั้นตอนวิธี	 	 1. เริ่ม   k = 0

	 	 	 2. ตรวจสอบ ค่า a และ b

	 	 	 	 2.1 ถ้า   a > b ทำ ข้อ 3

	 	 	 	 2.2 ถ้า   a < b ทำ

	 	 	 	 	 2.2.1 k = a และ l = b

	 	 	 	 	 2.2.2 a = l และ b = k

	 	 	 	 	 2.2.3 ทำ ข้อ 3

	 	 	 	 2.3 ถ้า  a = b  ทำ ข้อ 3	

	 	 	 3. ทำซ้ำ   k = k + 1

	 	 	 	 3.1 ถ้า   k mod 2 = 1ทำ

	 	 	 	 	 3.1.1  m = a  และ  n = b

	 	 	 	 	 3.1.2   X =             เมื่อ  X   เป็นจำนวนเต็ม

	 	 	 	 	 3.1.3 คำนวณ

	 	 	 	 	 	 M1[0][0] = M1[0][0] - (M1[1][0] x X)
	 	 	 	 	 	 M1[0][1] = M1[0][1] - (M1[1][1] x X)
	 	 	 	 	 	 M1[0][2] = M1[0][2] - (M1[1][2] x X)

[ ]

1          0            a

0          1            b[ ]

n
m
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	 	 	 	 3.2 ถ้า  k mod 2 = 0 ทำ

	 	 	 	 	 3.2.1   m = b  และ  n = a

	 	 	 	 	 3.2.2   X =        เมื่อ X เป็นจำนวนเต็ม

	 	 	 	 	 3.2.3 คำนวณ

	  	 	 	 	 	 M1[1][0] = M1[1][0] - (M1[0][0] x X)
	 	 	 	 	 	 M1[1][1] = M1[1][1] - (M1[0][1] x X)
	 	 	 	 	 	 M1[1][2] = M1[1][2] - (M1[0][2] x X)
	

	 	 	 จนกระทั่ง   M1[0][2] = 0 หรือ   M1[1][2] = 0

			   “แสดงผล” และหยุด

	 	 	 4. แสดงผล 

	 	 	 	 4.1 ถ้า   M1[0][2] ≠ 0  ทำ

	 	 	 	 	 4.1.1 ตัวหารร่วมมากของ a และ b คือ   r  =   M1[0][2]

	 	 	 	 	 4.1.2 ผลรวมเชิงเส้นคือ  ax + by = r

	 	 	 	 4.2 ถ้า   M1[1][2] ≠ 0  ทำ

	 	 	 	 	 4.2.1 ตัวหารร่วมมากของ a และ b คือ   r  =   M1[1][2]

	 	 	 	 	 4.2.2 ผลรวมเชิงเส้นคือ   ax + by = r

			   และหยุด

5. กิตติกรรมประกาศ
	 ขอขอบคุณอาจารย์สมภพ  ล่ำวัฒนพร และอาจารย์อลงกรณ ์ แซ่ตั้ง ที่ได้อ่านต้นฉบับและให้คำแนะนำตรวจทาน

แก้ไขเบื้องต้น ขอขอบคุณอาจารย์ไภษัชย์  แซ่จู และอาจารย์สุดา  เธียรมนตรี ที่ให้คำแนะนำในการเขียนโปรแกรมภาษาซี

	 และขอขอบคุณผู้ทรงคุณวุฒิที่บรรณาธิการเชิญเป็นผู้กลั่นกรองและประเมินบทความและให้คำแนะนำที่เป็น
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