
บทความวิชาการ

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)

1. บทนำ
	 การนำซอฟต์แวร์กลับมาใช้ใหม่นับเป็นกุญแจ

หลักของวิธีการดำเนินการด้านวิศวกรรมซอฟต์แวร์ รวม

ทั้งกลุ่มคนที่ทำงานเกี่ยวข้องกับซอฟต์แวร์ เนื่องจากเป็น

เรื่องที่เกี่ยวข้องกับการเพิ่มคุณภาพของซอฟต์แวร์ให้มี

วิธีการทำงานที่รวดเร็วยิ่งขึ้น โดยเฉพาะอย่างยิ่งในปัจจุบัน

อุตสาหกรรมซอฟต์แวร์มีการแข่งขันกันสูง เริ่มมีความ

ตอ้งการซอฟตแ์วรม์ากขึน้เรือ่ยๆ และทัว่โลกจะมนีกัพฒันา

ซอฟต์แวร์ไม่เพียงพอต่อความต้องการซอฟต์แวร์ เมื่อมี

การพัฒนาเกี่ยวกับการนำซอฟต์แวร์กลับมาใช้ใหม่เพิ่มขึ้น

เรื่อยๆ จึงทำให้เกิดงานวิจัยทางด้านนี้เพิ่มขึ้นมากมายใน

ปัจจุบัน (เช่น Guo, 2003; Ali, and Du 2004; Aggarwal

et al., 2005; Almeida et al., 2005; Frakes, and Kang, 2005;

Mascena et al., 2005; Poulin 2006; Sherif et al., 2006;

Burégio et al., 2007) ดังนั้นการนำซอฟต์แวร์กลับมาใช้

ใหม่หรือการใช้ซอฟต์แวร์ที่มีอยู่แล้วอย่างมีประสิทธิภาพ

จะช่วยให้ประหยัดงบประมาณพร้อมทั้งยังลดค่าใช้จ่าย

ช่วยเพิ่มประสิทธิภาพในการพัฒนาซอฟต์แวร์และเพิ่มผล

กำไรให้กับผู้พัฒนา อีกทั้งยังลดเวลาในการผลิตซอฟต์แวร์

เช่นกัน บทความเรื่องการนำซอฟต์แวร์กลับมาใช้ใหม่นี้

จะกล่าวถึง ความหมายของการนำซอฟต์แวร์กลับมาใช้ใหม่

ประเภทของการนำกลับมาใช้ใหม่ เหตุผลที่กล่าวว่าทำไม

เดือนเพ็ญ กชกรจารุพงศ์
Duenpen Kochakornjarupong Ph.D. (Artificial Intelligence in Education)
อาจารย์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ

Lecturer, Department of Mathematics, Faculty of Science, Thaksin University

การนำซอฟต์แวร์กลับมาใช้ใหม่ในอดีตจึงไม่ได้รับความ

นิยม และการนำโปรแกรมประยุกต์บนเครือข่ายกลับมา

ใช้ใหม่

2. การนำซอฟต์แวร์กลับมาใช้ใหม่คืออะไร
	 การนำซอฟต์แวร์กลับมาใช้ใหม่คือกระบวนการ

สร้างและปรับปรุงระบบของซอฟต์แวร์โดยใช้องค์ประกอบ

เดิมที่เกิดจากการพัฒนาซอฟต์แวร์ที่มีอยู่แล้วได้แก่ ส่วน

ของโปรแกรมและเอกสารที่ เกี่ยวข้องกับการพัฒนา

ซอฟต์แวร์ ตัวอย่างส่วนของโปรแกรม ได้แก่ รหัสต้นทาง

(source code) คลังโปรแกรม (library) คอมโพเน้นท์

(component) เป็นต้น ตัวอย่างองค์ประกอบเดิมของ

ซอฟต์แวร์ ได้แก่ เอกสารความต้องการของระบบ (re-

quirement documents) ข้อเสนอโครงการ (proposal)

เอกสารประกอบการออกแบบ (design documents)

แบบแผนการออกแบบ (design pattern) และสถาปัตยกรรม

ซอฟต์แวร์ (software architecture) เอกสารการพัฒนา

และทดสอบโปรแกรม รวมถึงคู่มือการใช้โปรแกรมและ

ชุดทดสอบโปรแกรม นอกจากนี้ยังรวมถึง เว็บเซอร์วิส

(web services) ซีแมนติกเว็บเซอร์วิส (semantic web

services) (Tjoa et al., 2005)โดยที่ซีแมนติกเว็บจะ

ทำงานร่วมกับออนโทโลยี (ontology) เพื่อสนับสนุนการใช้

!

วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

78

Thaksin.J., Vol.11 (1) January - June 2008

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)
เดือนเพ็ญ กชกรจารุพงศ์

งานเว็บเซอร์วิส จากที่กล่าวมาข้างต้นล้วนเป็นองค์ประกอบ

ที่ เกิดจากความพยายามในการพัฒนาซอฟต์แวร์ ให้

สามารถนำกลับมาใช้ใหม่ได้อย่างมีศักยภาพนั่นเอง

3. ประเภทของการนำซอฟต์แวร์กลับมาใช้ใหม่
	 จอร์แดน (Jodan, 1997) ได้แบ่งประเภทของการ

นำซอฟต์แวร์กลับมาใช้ใหม่เป็น 2 ประเภท ตามทิศทาง

การใช้งาน คือ แบบแนวนอน (Horizontal reuse) และ

แบบแนวตั้ง (Vertical Reuse) ต่อมาโคแวค (Kovàcs, 1999)

และคณะได้แบ่งประเภทของการนำซอฟต์แวร์กลับมาใช้

ใหม่เพิ่มขึ้นอีก 2 ประเภท คือ แบบแนวทแยงมุม (Diagonal)

และการนำจุดสำคัญกลับมาใช้ใหม่ (Point reuse) ดังรูปที่ 1

	 การนำซอฟต์แวร์กลับมาใช้ใหม่แบบแนวนอน

(Horizontal reuse) เป็นการนำคอมโพเน้นท์ของซอฟต์-

แวร์กลับมาใช้ใหม่ในโดเมนที่แตกต่างกัน นั่นคือมีการ

นำคอมโพเน้นท์ของซอฟต์แวร์กลับมาใช้ใหม่ในโปรแกรม

ประยุกต์ทั่วๆ ไปที่แตกต่างกัน เช่น คลาสของลิงค์ลิสท์

ชุดคำสั่งในการจัดการสตริงหรือฟังก์ชันที่เกี่ยวกับส่วน

ประสานกับผู้ ใช้ (GUI: Graphic User Interface)

	 การนำซอฟต์แวร์กลับมาใช้ใหม่แบบแนวดิ่ง

คือ การนำโดเมนหรือฟังก์ชันของระบบกลับมาใช้ใหม่

โดยใช้ กับตระกูลของระบบที่ มีหน้ าที่ ก ารทำงาน

ใกล้เคียงกัน แนวคิดดังกล่าวทำให้มีวิศวกรรมขอบเขต

(Domain Engineering) เกิดขึ้น วิศวกรรมขอบเขตคือ

กระบวนการที่ เป็นวงชีวิตที่มีการทำซ้ำได้ ที่ เข้าใจได้

ที่องค์กรนำมาใช้ เพื่อวัตถุประสงค์ทางธุรกิจอย่างมี

ชั้นเชิง กระบวนการดังกล่าวสามารถเพิ่มผลิตภัณฑ์ของ

โครงงานด้านวิศวกรรม โปรแกรมประยุกต์ (Application

Engineering) ผ่านมาตรฐานของผลิตภัณฑ์ที่เป็นประเภท

เดียวกัน วิศวกรรมขอบเขตทำให้เกิดวิศวกรรมโปรแกรม

ประยุกต์ ซึ่ งวิศวกรรมโปรแกรมประยุกต์ หมายถึง

โครงงานที่สร้างผลิตภัณฑ์ เพื่อให้ตรงกับความต้องการ

ของผู้ใช้ ฟอร์มและโครงสร้างของกิจกรรมของวิศวกรรม

โปรแกรมประยุกต์จะสร้างจากขอบเขต ดังนั้นวิศวกรรม

ขอบเขตจะเน้นในเรื่องการสร้างและการบำรุงรักษา

เพื่อนำชุดฟังก์ชันกลับมาใช้ใหม่ ส่วนวิศวกรรมโปรแกรม

ประยุกต์ เป็นการใช้งานที่ เกี่ ยวกับชุดฟังก์ชัน เพื่อ

สร้างผลิตภัณฑ์ใหม่

รูปที่ 1 ทิศทางการนำซอฟต์แวร์กลับมาใช้ใหม่ (Reuse directions)

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)
เดือนเพ็ญ กชกรจารุพงศ์

79 วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

Thaksin.J., Vol.11 (1) January - June 2008

	 การนำซอฟต์แวร์กลับมาใช้ใหม่แบบแนวทแยงมุม

(Diagonal reuse) ตามแนวตั้ง (Vertical Reuse) และ

ตามจุดสำคัญ (Point reuse) จะถูกจำกัดพื้นที่การนำมาใช้

ภายในโดเมนหนึ่งที่เฉพาะเจาะจง แต่การนำซอฟต์แวร์

กลับมาใช้ใหม่แบบแนวทแยงมุม เป็นการนำคอมโพเน้นท์

ของซอฟต์แวร์กลับมาใช้ใหม่ ซึ่งมีขอบเขตอยู่ภายใน

โดเมนเดียวกัน แต่อยู่คนละโครงงาน ในขณะที่การนำ

ซอฟต์แวร์กลับมาใช้ ใหม่แบบแนวตั้ ง เป็นการนำ

ส่วนประกอบ (element) ของซอฟต์แวร์กลับมาใช้ใหม่

ภายในโครงงานเดียวกัน แต่มาจากซอฟต์แวร์คนละ

เวอร์ชัน สำหรับการนำจุดสำคัญกลับมาใช้ใหม่ เป็นการ

นำคอมโพเน้นท์ของซอฟต์แวร์กลับมาใช้ใหม่ภายใน

ซอฟต์แวร์เวอร์ชันเดียวกัน

	 ในปัจจุ บันมีการจำแนกประเภทของการนำ

ซอฟต์แวร์กลับมาใช้ใหม่ได้ 3 ประเภท ตามขนาด

ของงาน (กิตติ, 2550) นั่นคือ

	 1) การนำระบบของโปรแกรมประยุกต์กลับมา

ใช้ใหม่ (Application System Reuse)

	 การนำระบบของโปรแกรมประยุกต์กลับมาใช้

ใหม่ เป็นการนำระบบเก่าที่พัฒนาไปแล้วกลับมาใช้

ใหม่ทั้ ง ระบบ โดยไม่มีการ เปลี่ ยนแปลงตัวระบบ

เลย แต่เปลี่ยนแปลงผู้ใช้ระบบเป็นกลุ่มใหม่ ที่มีความ

ต้องการใช้ระบบคล้ายกับระบบเก่า

	 2) การนำคอมโพเน้นท์กลับมาใช้ใหม่ (Com-

ponent Reuse)

	 การนำคอมโพเน้นท์กลับมาใช้ใหม่ เป็นการนำ

คอมโพเน้นท์ จากระบบเก่ามาใช้ในระบบใหม่ ระบบเก่า

กับระบบใหม่อาจคล้ายกัน โดยมีการพัฒนาร่วมกันกับ

ระบบใหม่ เรียกการพัฒนาลักษณะนี้ว่า วิศวกรรมเชิง

ชิ้นส่วน (Component-Based Software Engineering

หรือ CBSE) ทั้งนี้การนำคอมโพเน้นท์จากระบบเก่ากลับ

มาใช้ใหม่นั้น จะต้องประกอบด้วยสภาพแวดล้อมดัง

ต่อไปนี้ (Pressman, 2005)

	 •	 ความสามารถของฐานข้อมูลสำหรับการ

	 	 จัดเก็บคอมโพเน้นท์ของซอฟต์แวร์ และ

	 	 การจัดหมวดหมู่ของข้อมูลที่จำเป็นสำหรับ

	 	 การเรียกใช้งานคอมโพเน้นท์ของซอฟต์แวร์

	 	 อีกครั้ง

	 •	 ระบบจัดการไลบรารี่สามารถเข้าถึงฐานข้อมูล

	 	 ดังกล่าวได้

	 •	 ระบบเรียกใช้งานคอมโพเน้นท์ของซอฟต์แวร์

	 	 ที่สามารถเป็นแอพลิเคชั่นฝั่งไคลเอนท์ เพื่อ

	 	 ให้เรียกใช้งานคอมโพเน้นท์และรับการบริการ

	 	 จากเซิร์ฟเวอร์ที่ให้บริการไลบรารี่ได้

	 •	 เครื่องมือ CBSE ที่สนับสนุนการรวมของ

	 	 คอมโพเน้นท์ เพื่ อการนำกลับมาใช้ ได้ ใหม่

		 เพื่อนำไปสู่การออกแบบและพัฒนาระบบต่อไป

	 3) การนำอ็อบเจกต์และฟังก์ชันกลับมาใช้ใหม่

(Object and Function Reuse)

 	 การนำอ็อบเจกต์และฟังก์ชันกลับมาใช้ใหม่

สามารถทำได้โดยการนำอ็อบเจกต์และฟังก์ชัน จาก

ระบบเก่ามาใช้พัฒนาในระบบใหม ่หรือเชื่อมโยงกับระบบ

อื่นที่ใช้อ็อบเจกต์และฟังก์ชันเหมือนที่ระบบใหม่ต้องการ

4. ทำไมการนำซอฟต์แวร์กลับมาใช้ใหม่ในอดีต
จึงไม่ได้รับความนิยม
 การนำซอฟต์แวร์กลับมาใช้ใหม่เป็นเรื่องที่มีการ

ถกเถียงกันมากกว่าสามสิบปี (Schmidt, 2006) ในกลุ่ม

ของผู้ที่ทำงานเกี่ยวข้องกับซอฟต์แวร์ ผู้พัฒนาระบบ

ส่วนใหญ่จะใช้หลักการนำกลับมาใช้ใหม่ในบางโอกาส

เช่นการตัดและแปะโค้ดจากโปรแกรมที่มีอยู่แล้วไปยัง

โปรแกรมใหม่ วิธีการนี้อาจเหมาะกับการพัฒนาซอฟต์แวร์

ขนาดเล็ก ซึ่งอาจจะมีข้อจำกัดกับโปรแกรมเมอร์แต่ละคน

หรือกลุ่มผู้พัฒนาโปรแกรมกลุ่มเล็กๆ แต่วิธีการนี้จะ

ไม่เหมาะสมกับการพัฒนาซอฟต์แวร์ของหน่วยงานทาง

ธุรกิจ

 เพื่อจัดหาซอฟต์แวร์ที่นำกลับมาใช้ใหม่ได้อย่างมี

ระบบ สามารถลดเวลาและค่าใช้จ่ายในการพัฒนาคุณภาพ

ของซอฟต์แวร์ สามารถทำได้โดยการสร้างและใช้ชุดการ

วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

80

Thaksin.J., Vol.11 (1) January - June 2008

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)
เดือนเพ็ญ กชกรจารุพงศ์

ใช้งานที่หลากหลาย เช่น สถาปัตยกรรม แบบแผน

(pattern) คอมโพเน้นท์ และเฟรมเวิร์ค เช่น เฟรมเวิร์คที่

ซับซ้อนของคอมโพเน้นท์ที่นำกลับมาใช้ได้ใหม่ ซึ่งจะอยู่

ในรูปของภาษาเชิงวัตถุที่สามารถทำงานได้กับระบบ

ปฏิบัติการต่างๆ เฟรมเวิร์คเหล่านี้จะเน้นการทำงานร่วม

กับกลุ่มโดเมนที่สัมพันธ์กันเช่น ตัวประสานการทำงาน

ระหว่างผู้ใช้ในรูปแบบกราฟฟิก หรือไลบรารี่ของ C++

(the Standard Template Library: STL) การนำซอฟต์แวร์

กลับมาใช้ใหม่เป็นจุดเด่นที่สำคัญของการเขียนโปรแกรม

เชิงวัตถุ (Object Oriented Programming) เนื่องจากการ

เขียนโปรแกรมเชิงวัตถุจะเน้นการเขียนโปรแกรมในรูป

ของวัตถุ ซึ่ งจัดเป็นแนวทางหนึ่ งของการจัดระบบ

โปรแกรม โดยจะเน้นที่แนวทางการออกแบบโปรแกรม

โดยไม่ได้เน้นหนักเกี่ยวกับรายละเอียดของตัวดำเนินการ

แต่ละตัวนอกจากนี้แล้วการนำซอฟต์แวร์กลับมาใช้

ใหม่นั้น ยังมีข้อจำกัดในการใช้งานของไลบรารี่และ

เครื่องมือที่ผู้พัฒนาไม่ได้สร้างขึ้นเอง ข้อจำกัดดังกล่าว

อาจจัดการได้ยากกว่าการนำบางส่วนของซอฟต์แวร์ที่มี

อยู่แล้วนำมาเป็นส่วนหนึ่งของการพัฒนาซอฟต์แวร์

ให้กับองค์กรหนึ่งๆ

	 ดังที่ได้กล่าวมาแล้วนี้ จัดเป็นปัจจัยเชิงเทคนิค

ที่เป็นอุปสรรคต่อการนำซอฟต์แวร์กลับมาใช้ใหม่ ส่วน

ปัจจัยที่ ไม่ เกี่ยวข้องกับทางด้านเทคนิคในการพัฒนา

ซอฟต์แวร์กลับมาใช้ใหม่ (Schmidt, 2006) ได้แก่

	 •	 อุปสรรคทางด้านการจัดองค์กร ซึ่งเกี่ยวข้อง

	 	 กับเรื่องของความต้องการทางด้านธุรกิจ

	 •	 อุปสรรคทางด้านเศรษฐกิจ เช่นการลงทุน

	 	 กับกลุ่มที่นำซอฟต์แวร์กลับมาใช้ใหม่

	 •	 อุปสรรคทางด้านการบริหารจัดการ เนื่องจาก

	 	 มีความยุ่งยากในการจัดหมวดหมู่ จัดเอกสาร

	 	 และค้นหา ชิ้นส่วนของซอฟต์แวร์ เพื่อนำกลับ

	 	 มาใช้ใหม่

	 •	 อุปสรรคทางด้านการเมือง เช่น กลุ่มผู้พัฒนา

	 	 ซอฟต์แวร์ให้นำกลับมาใช้ได้ใหม่นี้จะถูก

	 	 จั บ ต ามอ งจ ากกลุ่ ม ผู้ พั ฒน า โปรแกรม

	 	 ประยุกต์ในแง่ของความปลอดภัยที่อาจจะ

	 	 ละเมิดชิ้นงานจากกลุ่มผู้พัฒนาโปรแกรม

	 	 ประยุกต์ไป

	 •	 อุปสรรคทางด้านจิตวิทยา เช่น กลุ่มผู้พัฒนา

	 	 โปรแกรมประยุกต์อาจจะมีความพยายามใน

	 	 การนำซอฟต์แวร์กลับมาใช้ได้ใหม่ แต่ถ้า

	 	 หากการจัดการในเรื่องนี้ยั งคงขาดความ

	 	 เชื่อมั่น อาจจะขาดความมั่นใจในเรื่องของ

	 	 ความสามารถทางด้านเทคนิค

	 อุปสรรคต่างๆ เหล่านี้อาจจะส่งผลให้ผู้พัฒนา

ขาดความรู้ ความชำนาญในเรื่องของแบบแผนการ

ออกแบบขั้นพื้นฐาน (fundamental design patterns)

เกี่ยวกับโดเมน ซึ่งทำให้ยากต่อความเข้าใจว่า ทำอย่างไร

จึงจะสร้างเฟรมเวิร์คและคอมโพเน้นท์สำหรับนำกลับ

มาใช้ได้ใหม่ให้มีประสิทธิภาพได้

	 โดยสรุปแล้วสาเหตุที่การนำซอฟต์แวร์กลับ

มาใช้ใหม่ในอดีตไม่ประสบความสำเร็จ เนื่องจากการ

นำซอฟต์แวร์กลับมาใช้ ใหม่นั้นต้องอาศัยหลักการ

วิธีการและความชำนาญในการพัฒนา แต่ในปัจจุบันเมื่อ

คำนึงถึงในทางปฏิบัติแล้ว การพัฒนาคอมโพเน้นท์และ

เฟรมเวิร์คของซอฟต์แวร์เพื่อนำกลับมาใช้ได้ใหม่ให้มี

คุณภาพนั้นทำได้ยาก เพราะจะต้องอาศัยความชำนาญใน

การพัฒนาและการใช้งานเพื่อสนับสนุนการพัฒนา

ผู้เชี่ยวชาญในด้านการพัฒนาซอฟต์แวร์ให้นำกลับมาใช้ได้

ใหม่ อย่างไรก็ตามการพัฒนาโปรแกรมประยุกต์ขนาด

ใหญ่ เมื่อถึงเวลาที่จะนำซอฟต์แวร์ขนาดใหญ่กลับมาใช้

ใหม่นั้น จะต้องอาศัยทั้งเรื่องของเทคนิคและที่ไม่เกี่ยวกับ

เทคนิค ในกรณีที่ ไม่ เกี่ยวกับเรื่องของเทคนิคนั้นจะ

เกี่ ยวข้องกับเรื่องของแรงขับเคลื่อนทางสังคมและ

เศรษฐกิจ เพราะจะส่งผลต่อการนำเทคโนโลยีมาใช้

เช่นกัน (Schmidt, 2006)

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)
เดือนเพ็ญ กชกรจารุพงศ์

81 วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

Thaksin.J., Vol.11 (1) January - June 2008

5. การนำโปรแกรมประยุกต์บนเครือข่ายกลับมา
ใช้ใหม่
	 แม้ว่าการพัฒนาระบบคอมพิวเตอร์ได้เพิ่มขึ้น

อย่างรวดเร็วในยุคปัจจุบัน พร้อมกับความเร็วในการรับ

ส่งข้อมูลผ่านระบบเครือข่ายในอัตราความเร็วที่สูงขึ้น

เรื่อยๆ แต่การออกแบบและพัฒนาโปรแกรมประยุกต์บน

เครือข่ายยังต้องใช้ค่าใช้จ่ายที่สูง อีกทั้งยังมีข้อผิดพลาด

ในการใช้งานอยู่บ้าง ซอฟต์แวร์บางอย่างใช้งานกับระบบ

ปฏิบัติการบางตัวไม่ได้ หรือใช้งานได้กับสถาปัตยกรรมที่

แตกต่างกัน อย่างไรก็ตามการพัฒนาโปรแกรมประยุกต์

บนเครือข่าย เพื่อให้นำกลับมาใช้ได้ใหม่สามารถทำได้โดย

การแทรกซอฟต์แวร์ตัวกลาง (middle software) ลงไป

ระหว่างโปรแกรมประยุกต์และระบบปฏิบัติการนั้น ทั้งนี้

จะต้องอาศัยชั้นของโปรโตคอลของเครือข่ายและฮาร์ดแวร์

ร่วมด้วย ซึ่งสิ่งเหล่านี้จะต้องใช้ค่าใช้จ่ายจำนวนมาก

ซอฟต์แวร์ตัวกลางจะเข้าไปเชื่อมระหว่างโปรแกรม

ประยุกต์และฮาร์ดแวร์ระดับล่าง ร่วมกับโครงสร้างของ

ซอฟต์แวร์ เพื่อให้โปรแกรมประยุกต์นั้นเชื่อมกับสิ่ง

เหล่านี้ ได้ และเพื่อให้ง่ ายต่อการรวมคอมโพเน้นท์

ต่ า งๆ ที่ ถู กพัฒนาจากผู้ ผลิตทางด้ าน เทคโนโลยีที่

หลากหลาย

	 ดังนั้นซอฟต์แวร์หรือโปรแกรมประยุกต์บน

เครือข่ ายอาจจะมีการนำกลับมาใช้ ใหม่ ได้ อย่ า งมี

ระบบ จะต้องอาศัยปัจจัยต่อไปนี้

	 •	 ค ว ร ให้ มี ก า รพัฒนาคอม โพ เน้ นท์ แ ละ

	 	 เฟรม เวิ ร์ คภายใต้ เทคโนโลยีซอฟต์แวร์

	 	 ตั วกลาง (midd leware) เช่น CORBA,

	 	 J2EE, และ .NET

	 •	 ควรให้มีการเพิ่มจำนวนผู้พัฒนาโครงงานจาก

	 	 สิบปีที่ผ่านมา โดยให้มาใช้เทคนิคของการ

	 	 ออกแบบเชิงวัตถุ เช่น UML และ แบบแผน

	 	 (pa t t e rn) และสนับสนุนให้มีการ เขี ยน

	 	 โปรแกรมโดยใช้ภาษาเชิงวัตถุ เช่น C++ , Java,

	 	 และ C#

	 แนวโน้มเหล่านี้ เหมาะกับงานด้านธุรกิจ เช่น

การค้าอิ เล็กทรอนิกส์ (electronic commerce) และ

เครือข่ายข้อมูล (data networking) ที่สามารถลดวงจรเวลา

ในการพัฒนาระบบที่อาจจะกระทบต่อความสำเร็จ

ทางด้านธุรกิจ

	 นอกจากนี้การพัฒนาเว็บแอพพลิเคชั่น (web

application) นับเป็นการพัฒนาโปรแกรมประยุกต์บน

เครือข่ายอินเตอร์เน็ตที่ได้รับความนิยมมากในปัจจุบัน

การพัฒนาเว็บแอพพลิเคชั่นในปัจจุบันผู้พัฒนามักจะ

นิยมใช้ เว็บเซอร์วิส (web services) ซึ่งเป็นชิ้นส่วนของ

โปรแกรมที่บริการประมวลผลข้อมูลตามที่มีการร้องขอ

จากโปรแกรมประยุกต์ (application) เนื่องจากเว็บ

แอพพลิเคชั่นในบางหน่วยงานอาจมีการประมวลผลที่

เหมือนกัน ทำให้เกิดความซ้ำซ้อนและสิ้นเปลืองเวลา

ในการทำงาน จึงเกิดแนวความคิดในการพัฒนาเว็บ

เซอร์วิส เพื่อให้มีการนำชิ้นส่วนของโปรแกรมที่ต้องการ

มาใช้ซ้ำอีก เพื่อให้ลดเวลาในการพัฒนาโปรแกรม เช่น

จากผลงานวิจัยของสิรยาและสุวิมล (2550) ได้สรุปว่า

เว็บเซอร์วิสสำหรับบริการข้อมูลด้านบุคลากรของ

มหาวิทยาลัยทักษิณมีประสิทธิภาพอยู่ในระดับดีมาก

ทำให้กระบวนการพัฒนาเว็บแอพลิเคชั่นด้านงานบุคลากร

พัฒนาได้รวดเร็วยิ่งขึ้น เนื่องจากมีการเรียกใช้เว็บเซอร์วิส

มาประกอบเป็นระบบงานที่สมบูรณ ์รวมทั้งประหยัดเวลา

ลดจำนวนบรรทัดในการเขียนโปรแกรม และลดการจัดการ

กับฐานข้อมูลด้วยเช่นกัน

	 อย่างไรก็ตามการสร้างชิ้นส่วนของซอฟต์แวร์ให้

นำกลับมาใช้ได้ใหม่นั้นต้องอาศัยองค์กรที่มีความพร้อม

ทางด้านผู้พัฒนาและนักออกแบบ ที่สามารถแยกแยะ

แหล่งข้อมูล ซึ่งจะเป็นกุญแจสู่ความหลากหลาย (vari-

ability) ของโดเมนของโปรแกรมประยุกต์นั้นๆ การ

กำหนดและแยกแยะโปรแกรมประยุกต์บนเครือข่ายที่มี

ความซับซ้อนจะต้องอาศัยกระบวน การพัฒนาซ้ำแล้ว

ซ้ำอีกเนื่องจากการออกแบบชิ้นส่วนของซอฟต์แวร์

ให้นำกลับมาใช้ได้อีกให้มีความถูกต้องในครั้งแรกนั้น

เป็นเรื่องที่ทำได้ยาก ดังนั้นนักออกแบบและพัฒนา

วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

82

Thaksin.J., Vol.11 (1) January - June 2008

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)
เดือนเพ็ญ กชกรจารุพงศ์

ส่ วนใหญ่จึ งนิยมใช้ โม เดลวงจรชีวิตในการพัฒนา

ซอฟต์แวร์แบบน้ำตก (waterfall) แบบบนลงล่าง (top-

down)

7. บทสรุป
	 จะเห็นได้ว่าการนำซอฟต์แวร์กลับมาใช้ใหม่จะ

ช่วยเพิ่มความน่าเชื่อถือให้กับระบบใหม่เพราะระบบเก่าได้

ผ่านการใช้งาน พบปัญหา แก้ไข และทดสอบมาแล้ว แต่จะ

ต้องคำนึงถึงค่าใช้จ่ายในการบำรุงรักษาเพิ่มเติม หากไม่

สามารถนำซอฟต์แวร์นั้นกลับมาใช้ใหม่ได้ แม้ว่าการ

นำซอฟต์แวร์กลับมาใช้ใหม่จะใช้ เวลาในการพัฒนา

ซอฟต์แวร์น้อยลง เพราะใช้ เวลาในการพัฒนาและ

ตรวจสอบน้อยลง แต่ผู้พัฒนายังขาดเครื่องมือสนับสนุน

เพราะเครื่องมือในการพัฒนาซอฟต์แวร์บางชนิดอาจไม่

สนับสนุนการนำกลับมาใช้ใหม่ นอกจากนี้แล้วผู้พัฒนา

ซอฟต์แวร์จะต้องเข้าใจและใช้งานคอมโพเน้นท์ในระบบ

เก่าได้ดี หากไม่เข้าใจแล้วจะทำให้ขาดความท้าทายใน

การพัฒนาซอฟต์แวร์ เพราะนักพัฒนาซอฟต์แวร์นิยม

สร้างหรือพัฒนาซอฟต์แวร์ใหม่มากกว่าการนำกลับมา

ใช้ใหม่ อย่างไรก็ตามการนำซอฟต์แวร์กลับมาใช้ใหม่จะ

ช่วยลดความเสี่ยงในการพัฒนาซอฟต์แวร์ อีกทั้งยังช่วย

เพิ่มทักษะให้กับผู้พัฒนาซอฟต์แวร์และช่วยให้ผู้ใช้ได้

ระบบที่อาจคล้ายกับระบบเก่า เพราะคุ้นเคยกับระบบเดิม

เช่น ส่วนต่อประสานกับผู้ใช้ (user interface) คล้ายกับ

ระบบเดิม เพื่อลดข้อผิดพลาดในการใช้ระบบ และทำให้ผู้ใช้

ทำงานได้เร็วขึ้น

เอกสารอ้างอิง
กิตติ ภักดีวัฒนะกุล และพนิดา พานิชกุล (2550).

	 วิศวกรรมซอฟต์แวร์ (Software Engineering).

	 กรุงเทพฯ: บริษัท เคทีพี คอมพ์ แอนด์ คอนซัลท์

	 จำกัด.

สิรยา สิทธิสาร และสุวิมล จุงจิตร์ (2550). การพัฒนา

	 เว็บเซอร์วิสสำหรับบริการข้อมูลด้านบุคลากรของ

	 มหาวิทยาลัยทักษิณ. การประชุมวิชาการและ

 	เสนอผลงานวิจัย (การวิจัยเพื่อพัฒนาคุณภาพชีวิต

	 อย่างยั่งยืน) มหาวิทยาลัยทักษิณ ครั้งที่ 17

	 ประจำปี 2550.

Aggarwal, K.K., Singh, Y., Kaur, A., and Malhotra,

	 R. (2005). Software reuse metrics for

	 object-oriented systems. The 3rd ACIS

	 International Conference on Software

	 Engineering Research, Management and

	 Applications, IEEE/CS Press, MI, USA (2005),

	 pp. 48–54.

Ali F. M., and Du W. (2004).Toward reuse of object-

	 oriented software design models. Information

	 and Software Technology, 46(8), pp. 499-517

Almeida, E.S.d., Alvaro, A., Lucrédio, D. Garcia,

	 V.C., and Meira, S.R.d.L. (2005). A survey on

	 software reuse processes. IEEE International

	 Conference on Information Reuse and Integration

	 (IRI 2005), IEEE/CS Press, Las Vegas, USA

	 (2005).

Burégio, V.A.d.A., Almeida, E.S.d., Lucrédio, D., and

	 Meira, S.R.d.L. (2007). Specification, design and

	 implementation of a reuse repository. The 31st

	 IEEE Annual International Computer Software

	 and Applications (COMPSAC) Conference –

	 Short paper, Beijing, China.

Douglas C. Schmidt. (2006). Why Software Reuse has

	 Failed and How to Make It Work for You.

	 Retrieved from http://www.cs.wustl.edu/

	 ~schmidt/reuse-lessons.html [Accessed

	 on 28 November 2007] (an earlier version of

	 this article appeared in the C++ Report

	 magazine, January 1999, Last modified

	 September 2006).

การนำซอฟต์แวร์กลับมาใช้ใหม่ (Software Reuse)
เดือนเพ็ญ กชกรจารุพงศ์

83 วารสารมหาวิทยาลัยทักษิณ
ปีที่ 11 ฉบับที่ 1 มกราคม - มิถุนายน 2551

Thaksin.J., Vol.11 (1) January - June 2008

Frakes, W.B., and Kang, K. (2005). Software reuse

	 research: status and future. IEEE Transactions

	 on Software Engineering, 31(7), pp. 529–536.

Jiang Guo. (2003). Software reuse through

	 re-engineering the legacy systems. Information

	 and Software Technology, 45(9), pp. 597-609.

Kimberly Jordan. (1997). Software reuse. Retrieved

	 from http://baz.com/kjordan/swse625/htm/

	 tp-kj.htm [Accessed on 28 November 2007].

Kovács, G. L., Kopácsi, S., Nacsa, J., Haidegger,

	 G. and Groumpos, P. (1999). Application of

	 software reuse and object-oriented method-

	 ologies for the modelling and control of

	 manufacturing systems. Computers in

	 Industry, 39(3), pp. 177-189.

Krueger, C. (1992). Software reuse. ACM Computing

	 Surveys, 24 (2), pp. 131–183.

Mascena, J.C.C.P., Almeida, E.S.d.,and Meira,

	 S.R.d.L.(2005). A comparative study on

	 software reuse metrics and economic models

	 from a traceability perspective. IEEE Interna-

	 tional Conference on Information Reuse and

	 Integration (IRI), IEEE/CS Press, Las Vegas,

	 NV, USA (2005).

Poulin, J. (2006). The business case for software

	 reuse: reuse metrics, economic models,

	 organizational issues, and case studies. The 9th

	 International Conference on Software Reuse –

	 Tutorial Notes, Torino, Italy.

Roger S. Pressman. (2005). Software Engineering: A

	 Practitioner’s Approach. Singapore: McGraw-

	 Hill.

Sherif, K., Appan, R. and Lin, Z. (2006). Resources

	 and incentives for the adoption of systematic

	 software reuse. International Journal of

	 Information Management 26 (1), pp. 70–80.

Tjoa. A. M., Andjomshoaa A., Shayeganfar F., and

	 Wagner R. (2005). Semantic Web Challenges

	 and New Requirements. Proceedings of the 16th

	 International Workshop on Database and Expert

	 Systems Application (DEXA’05). IEEE

	 Computer Society.

	รูปแบบวารสาร.pdf
	บทบรรณาธิการ.pdf
	p1-p7.pdf
	p8-18.pdf
	p19-34.pdf
	p35-44.pdf
	p45-63.pdf
	p64-76.pdf
	p77-83.pdf
	p84-93.pdf
	ดัชนี.pdf
	รายนาม-รูปแบบเนื้อหา.pdf
	ใบสมัคร.pdf

