

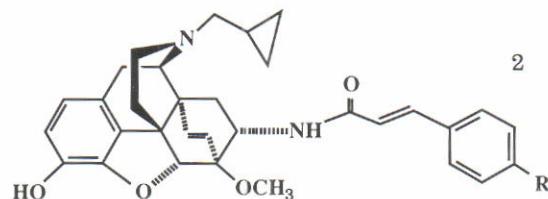
Crystal and Molecular Structures of two epimers of N-cyclopropylmethyl-[7,3']-dihydro-2'-furanone-6, 14-*endo*-ethenotetrahydrothebaine

Key word : crystal structure, opioid, epimers

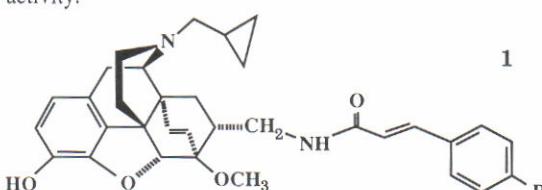
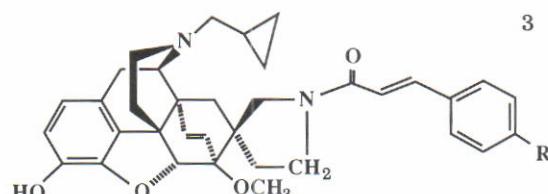
Hirihattaya Phetmung, A. Guy Orpen, Nicholas Nieland and John. W. Lewis

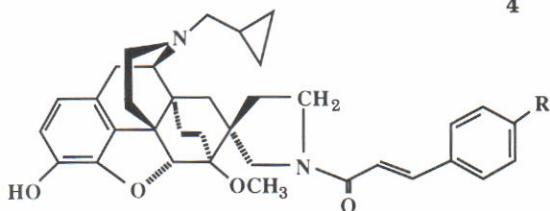
School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K.

Abstract


The structures of two opioids derivatived from thebaine have been determined by single crystal X-ray crystallographic methods. Epimer I of N-cyclopropylmethyl-[7,3']-dihydro-2'-furanone-6,14,-*endo*-ethenotetrahydrothebaine, crystallized in monoclinic system having space group $P2_1$ with $a = 7.645(2)$, $b = 9.349(14)$, $c = 16.076(5)$ Å and $\beta = 103.4(2)$. Epimer II crystallized in orthorhombic system having space group $P2_12_12_1$ with $a = 7.948(1)$, $b = 16.652(3)$, $c = 16.661(3)$ Å . the two epimers have opposite stereochemistry at the spiro junction of ring H. In other respects the molecular structures are similar.

Introduction



Morphine¹ has long been used in modern medicine as a treatment to relieve moderate to severe pain. However, it causes several undesirable effects such as respiratory depression, lowering of the blood pressure, some nausea, vomiting and constipation. The most serious disadvantage is that on continued administration of the drug, patients develop not only tolerance but also dependence.


Although a large number of selective compounds for the opioid receptors have been synthesised and evaluated, there is still a great deal to be learnt about how these compounds interact with the receptor at the molecular level. Recently it was discovered² that the 7 α - cinnamoaminoethyl derivatives of thebaine (1) were non-competitive, selective μ antagonists with an extremely long duration of activity.

Since the closely related 7 α -cinnamoylamino derivatives of thebaine (2) were much less effective, it can be concluded that the location of the cinnamoylamino group is of major importance for the irreversible interaction of these derivatives with μ opioid receptors.

To the further explore this situation, we wished to constrain the aminomethyl group within a pyrrolidine ring with spiro attachment to C(7) (3 and 4).

The preparation of these compounds involves a route through the corresponding lactones (compounds **I** and **II**), **3** being synthesised from the γ -lactone **I** and **4** from the epimeric γ -lactone **II**. Thus it was crucial that the stereochemistry about C(7) was known with certainty. Single crystal X-ray crystallographic methods were employed to achieve this aim.

Experimental

The structure determinations of **I** and **II** were carried out on block-like crystals chosen from samples recrystallized from methanol for **I** and dichloromethane/methanol solutions for **II**. From these one single crystal was selected. Since the compounds were air stable the crystal was mounted on a glass fibre with silicone grease. For **I** all diffraction measurements were made at low temperature (173K) with a Siemens three-circle SMART³ area detector diffractometer using graphite mono-chromated Mo-K α radiation. The intensities in a hemisphere of reciprocal space for $2\theta < 55^\circ$ were integrated using the SAINT⁴ program. For **II** all diffraction measurements were made at room temperature (293K) on a Siemens P4 diffractometer, using graphite monochromated Mo-K α X-radiation. XSCANS⁵ software was used for all data measurements. Diffracted intensities were measured in a unique octant of reciprocal space for $4.0 < 2\theta < 55.0^\circ$ by $\theta/2\theta$ scans.

Lorentz and polarisation corrections were applied. The structures were solved by direct methods and refined using full-matrix least-squares refinement on F^2 with the SHELXTL program⁶ on a Silicon Graphics IRIS computer. All non-hydrogen atoms were assigned anisotropic displacement parameters and refined without positional constraints. Hydrogen atoms were constrained to idealised positions. An isotropic extinction correction⁷ was applied for **I**, parameter x refined to 0.0132(18) where $F_C = F_{\text{uncorr}} / (1 + 0.001x F_C^2 / \sin \theta)^{1/4}$. The lattice of **I** is pseudo-orthorhombic C-centred ($a = 7.645$, $b = 31.277$, $c = 9.349$ Å and $\gamma = 90.35^\circ$) but Laue symmetry is clearly monoclinic ($R_{\text{orthorhombic}} = 0.411$, $R_{\text{monoclinic}} = 0.040$). The twin law, $-1\ 0\ 0\ 0\ -1\ 0\ 1\ 0\ 1$, was applied for refinement and gave twin component values 0.9975(12) and 0.0025(12) indicating no significant pseudo-orthorhombic twinning. The Flack absolute structure parameters⁸ x were used as the check on whether or not the absolute configuration could be determined from the experimental data, the values -2(2) for **I** and -1(2) for **II**, for this parameter indicates there is no evidence for an incorrect assignment of chirality.

Table 1 lists pertinent physical data and details of the structure analyses.

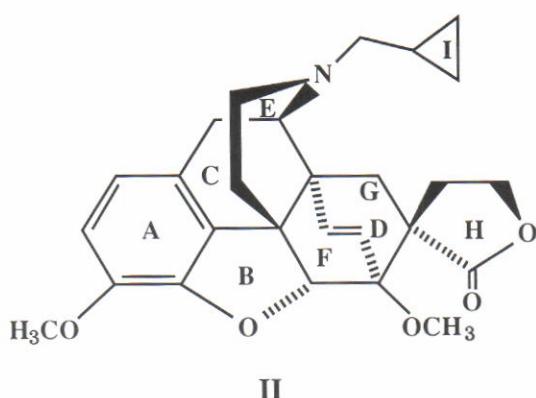
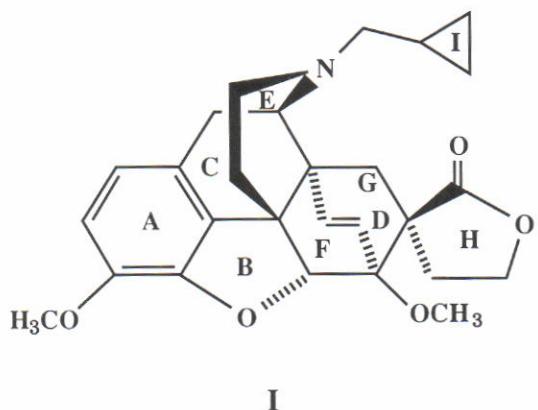



Table 1 Summary of crystal parameters, data collection and refinement for the crystal structures

Compound	I	II
Empirical formula	C ₂₇ H ₃₁ O ₅	C ₂₇ H ₃₁ O ₅
Formular weight	449.53	449.53
Temperature/K	173(2)	293(2)
Wavelength/ Å	0.71073	0.71073
Crystal system	monoclinic	orthorhombic
Space group	P ₂ 1	P ₂ 12 ₁ 2 ₁
<i>a</i> / Å	7.645(2)	7.9482(11)
<i>b</i> / Å	9.3486(14)	16.652(3)
<i>c</i> / Å	16.076(5)	16.661(3)
β /°	103.4(2)	90.00
<i>U</i> / Å ³	117.6(5)	2205.1(6)
<i>Z</i>	2	4
<i>D</i> / g/cm ⁻³	1.336	1.354
μ / mm ⁻¹	0.092	0.093
<i>F</i> (000)	480	960
Crystal size/mm	0.4 x 0.2 x 0.2	0.4 x 0.3 x 0.2
Reflections collected	7111	3699
Independent reflections, <i>R</i> _{int}	4701, 0.0399	3491, 0.0297
Data/restraints/parameters	4700 / 1 / 301	3491 / 0 / 298
Goodness-of-fit on <i>F</i> ²	1.161	1.094
Final <i>R</i> 1 ^a and <i>wR</i> 2 ^b	0.0748, 0.1454	0.0513, 0.1098
Absolute structure parameter	-2(2)	-1(2)
Weighting factors ^b	0.0337, 1.7539	0.037, 1.2709
Largest diff. peak and hole/e. Å ⁻³	0.609, -0.422	0.221, -0.230

^a.Structure was refined on F_0^2 using all data; the value of *R*₁ is given for comparison with older refinements based on F_0^2 with a typical threshold of

$F \geq 4 \sigma (F)$

^b $wR_2 = [\sum w(F_0^2 - F_C^2)^2 / \sum w(F_0^2)^2]^{1/2}$ where $w^{-1} = [\sigma^2(F_0^2) + (aP)^2 + bP]$
and $P = [\text{Max}(F_0^2, 0) + 2F_C^2]/3$

Results and Discussion

The molecular structures of **I** and **II** are illustrated in Fig. 1. The molecules are made up of five components; (i) the dihydrobenzofuran (A and B rings), (ii) C and E rings, (iii) the propalene (D, F and G rings), (iv) the γ -lactone (H ring), and (v) the cyclopropane (I ring). In

general, for these compounds the absolute configuration known excepted for that of the spiro lactone ring.

The numbering of the carbon atoms (Fig. 2 and 3) in the crystal structures correspond to the commonly accepted conventions for the morphine class of molecule. The T-shape⁹ of the rigid morphine - like part is displayed in both compounds.

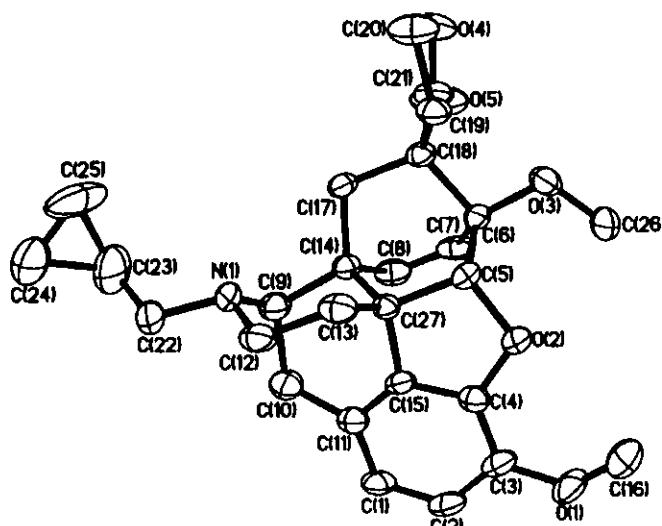


Fig. 2 Structure and numbering scheme for **I**. Thermal ellipsoids are the 30% probability level and hydrogen atoms are omitted for clarity

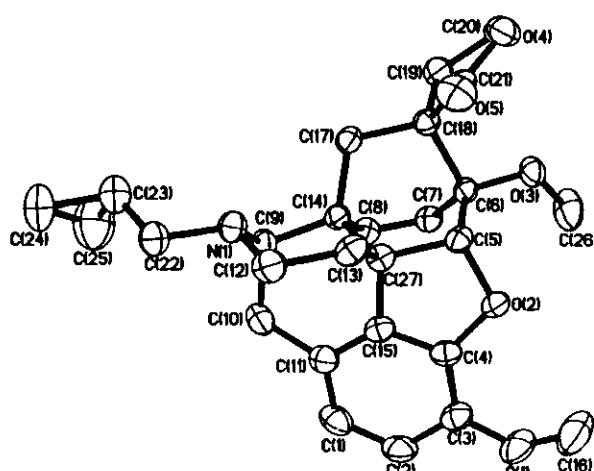


Fig. 3 Structure and numbering scheme for **II**. Thermal ellipsoids are the 30% probability level and hydrogen atoms are omitted for clarity

The atoms of the benzene ring, A, are essentially coplanar whereas the dihydrofuran ring, B, adopts a somewhat twisted envelope conformation as are those found in morphine derivatives^{10,12-19,21}

The carbocyclic ring, C:[C(14)-C(27)-C(15)-C(11)-C(10)-C(9)], having five atoms roughly in a plane with C(14) out of plane (-0.51 Å in I and 0.46 Å in II), is in a sofa conformation¹¹ whereas the E, piperidine ring [N(1)-C(12)-C(13)-C(27)-C(14)-C(9)], assumes a chair conformation in both I and II. The substituent group at nitrogen atom is in the equatorial conformation, leaving the lone pair at nitrogen axial. The nitrogen atom does not participate in any hydrogen bonding, in contrast, the corresponding nitrogen is hydrogen bonded in the crystal structure of morphine monohydrate¹².

The fused ring system, propalene, contains rings D, F and G. the three carbocyclic rings, D: [C(5)-C(6)-C(18)-

C(17)-C(14)-C(27)] and G: [C(6)-C(7)-C(8)-C(14)-C(17)-C(18)], all adopt the boat conformations and the conformation of the fused ring is as those found in other thebaine derivatives²⁰.

The γ -lactone, H ring, in both compounds has an envelope conformation. The compounds have opposite stereochemistry at the spiro ring junction, as shown in Fig. 4, with torsion angles [C(17)-C(18)-C(19)-C(20)] -89.5° in I and [C(17)-C(18)-C(19)-C(20)] -146.7° in II (see Table 2).

The cyclopropylmethyl side-chains (ring I) have different conformations (see in Fig. 4) in I and II. In I, it has a gauche⁻ conformation with torsion angle [N(1)-C(22)-C(23)-C(25)] -80.0° and in I a gauche⁺ conformation with torsion angle [N(1)-C(22)-C(23)-C(25)] 101.4°

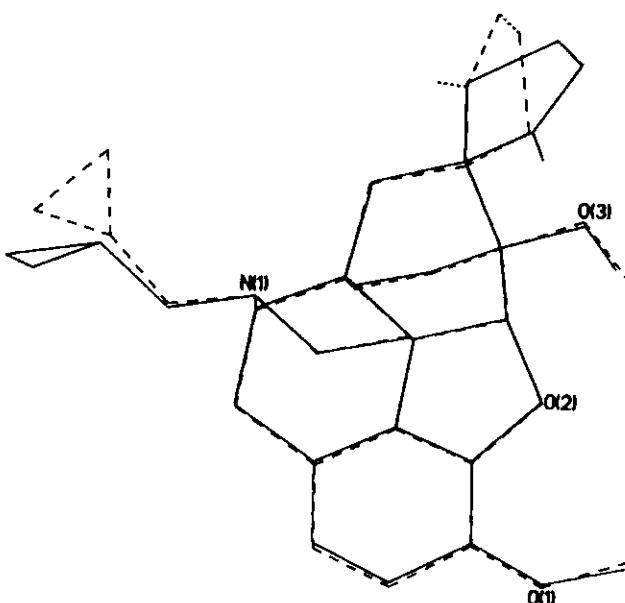


Fig. 4 The least square fit of I (broken line) to II (solid line) the oxygen and nitrogen atoms were used to perform the fit are labelled. The hydrogen atoms were omitted for clarity.

Table 2 Selected torsion angles for I and II

torsion angles	I /°	II /°	torsion angles	I /°	II /°
C(12)-N(1)-C(9)-C(10)	56.6	56.6	C(6)-C(18)-C(19)-C(20)	144.0	-90.2
C(12)-N(1)-C(9)-C(14)	-68.4	-68.4	C(17)-C(18)-C(19)-C(20)	-89.5	146.7
C(22)-N(1)-C(9)-C(10)	-68.7	-68.7	C(21)-C(18)-C(19)-C(20)	27.2	25.2
C(12)-N(1)-C(9)-C(14)	166.4	166.4	C(18)-C(19)-C(20)-O(4)	-30.3	26.1
N(1)-C(9)-C(10)-C(11)	-93.6	-93.6	C(6)-C(18)-C(21)-O(4)	-135.5	-99.9
C(14)-C(9)-C(10)-C(11)	29.6	29.6	C(6)-C(18)-C(21)-O(5)	49.3	80.3
C(9)-N(1)-C(12)-C(13)	60.3	60.3	C(17)-C(18)-C(21)-O(4)	105.2	138.9
C(22)-N(1)-C(12)-C(13)	-172.9	-172.9	C(17)-C(18)-C(21)-O(5)	-70.1	-40.9
N(1)-C(12)-C(13)-C(27)	-51.5	-51.5	C(19)-C(18)-C(21)-O(4)	-15.3	16.6
C(7)-C(8)-C(14)-C(9)	-171.6	-171.6	C(19)-C(18)-C(21)-O(5)	169.5	-163.3
C(7)-C(8)-C(14)-C(27)	-55.6	-55.6	C(9)-N(1)-C(22)-C(23)	-74.6	63.1
N(1)-C(9)-C(14)-C(8)	-179.1	-179.1	C(12)-N(1)-C(22)-C(23)	159.8	-171.0
N(1)-C(9)-C(14)-C(17)	-56.4	-56.4	N(1)-C(22)-C(23)-C(24)	-154.5	171.9
N(1)-C(9)-C(14)-C(27)	63.8	63.8	N(1)-C(22)-C(23)-C(25)	-80.0	101.4
C(10)-C(9)-C(14)-C(8)	54.1	54.1	C(22)-C(23)-C(24)-C(25)	115.9	-110.5
C(10)-C(9)-C(14)-C(17)	176.8	176.8	C(25)-C(23)-C(24)-C(25)	0.0	0.0

Table 3. Selected bond distances for I and II

Bond	I	II	Bond	I	II
O(4)-C(21)	1.345(5)	1.342(4)	C(9)-C(10)	1.564(6)	1.581(4)
O(4)-C(20)	1.459(6)	1.453(4)	C(12)-C(13)	1.504(7)	1.512(5)
O(5)-C(21)	1.190(6)	1.201(4)	C(13)-C(27)	1.546(6)	1.540(4)
N(1)-C(12)	1.441(7)	1.474(4)	C(14)-C(27)	1.537(6)	1.545(4)
N(1)-C(22)	1.465(6)	1.466(4)	C(14)-C(17)	1.540(5)	1.538(4)
N(1)-C(9)	1.489(7)	1.474(4)	C(15)-C(27)	1.497(5)	1.483(4)
C(4)-C(15)	1.373(6)	1.373(4)	C(17)-C(18)	1.566(6)	1.557(4)
C(5)-C(27)	1.537(6)	1.533(4)	C(18)-C(19)	1.540(6)	1.539(4)
C(5)-C(6)	1.543(6)	1.548(4)	C(18)-C(21)	1.531(6)	1.534(4)
C(6)-C(7)	1.505(7)	1.507(4)	C(19)-C(20)	1.503(7)	1.521(5)
C(6)-C(18)	1.573(6)	1.593(4)	C(22)-C(23)	1.378(10)	1.493(5)
C(7)-C(8)	1.317(7)	1.314(4)	C(23)-C(25)	1.475(9)	1.471(7)
C(8)-C(14)	1.517(6)	1.512(4)	C(23)-C(24)	1.501(9)	1.499(6)
C(9)-C(14)	1.546(6)	1.545(5)	C(24)-C(25)	1.444(10)	1.489(7)

Table 4 Selected bond angles for I and II

Angles	I	II	Angles	I	II
C(21)-O(4)-C(20)	110.4(4)	111.4(3)	C(21)-C(18)-C(19)	101.3(3)	101.0(2)
C(12)-N(1)-C(9)	111.2(4)	112.2(3)	C(19)-C(18)-C(17)	114.0(3)	114.1(2)
C(22)-N(1)-C(9)	113.4(5)	114.9(3)	C(21)-C(18)-C(6)	109.1(3)	109.1(2)
C(27)-C(5)-C(6)	108.0(3)	208.8(2)	C(19)-C(18)-C(6)	113.7(4)	110.5(2)
C(7)-C(6)-C(18)	107.5(4)	105.5(2)	C(20)-C(19)-C(18)	103.7(4)	104.6(3)
C(7)-C(8)-C(14)	114.7(4)	115.9(3)	O(5)-C(21)-C(18)	128.7(4)	128.0(3)
N(1)-C(9)-C(14)	108.2(3)	108.9(2)	O(4)-C(21)-C(18)	110.5(4)	111.0(3)
N(1)-C(12)-C(13)	110.1(4)	111.6(3)	C(22)-C(23)-C(25)	127.6(8)	120.5(4)
C(12)-C(13)-C(27)	112.6(4)	112.5(3)	C(22)-C(23)-C(24)	125.9(8)	119.1(4)
C(8)-C(14)-C(27)	107.2(4)	106.6(2)	C(25)-C(23)-C(24)	58.1(5)	60.1(3)
C(8)-C(14)-C(17)	105.6(3)	105.6(2)	C(15)-C(27)-C(14)	106.1(4)	106.7(2)
C(27)-C(14)-C(17)	108.7(4)	108.6(2)	C(15)-C(27)-C(5)	102.3(4)	101.9(2)
C(8)-C(14)-C(9)	113.8(4)	112.6(3)	C(14)-C(27)-C(5)	112.3(3)	111.6(2)
C(27)-C(14)-C(9)	105.3(3)	105.6(2)	C(15)-C(27)-C(13)	111.7(3)	112.7(3)
C(17)-C(14)-C(9)	115.9(4)	117.3(2)	C(14)-C(27)-C(13)	111.4(4)	111.2(2)
C(14)-C(17)-C(18)	109.1(1)	110.1(2)	C(5)-C(27)-C(13)	112.6(4)	112.4(3)

The crystal packing in both compounds showed weak intermolecular interactions dominated by normal Van der Waals contacts.

The selected bond lengths and bond angles for the non-hydrogen atoms are shown in Table 3 and 4. In general the bond lengths and bond angles are not significantly different. The three C-N bonds have an average length of 1.465(4) Å as is normal and as seen in morphine derivatives¹³. Similar lengths are seen in opiate alkaloids¹⁶, morphine derivatives¹⁷, dihydromorphine-6-*o*-sulfate¹⁸, and in naltrexone hydrochloride¹⁹.

The bond distances of I and II in the 6,14 *endo*-etheno bridge are similar to those in the other opioids, such as morphine and various of its derivatives¹⁷.

Conclusion

Valuable information has been gained from X-ray studies of these compounds identifying the stereochemistry of epimers I and II and hence of 3 and 4.

Acknowledgements

We are very grateful to the Thai Government Scholarship for a grant to H. P. and to the National Institute on Drug Abuse (NIDA) for the award of a studentship to N. N. We also thank Dr. Stephen M. Husbands for his valuable contributions.

References

1. M. Gate. 1966. *Scientific American*, 5, 131.
2. I. Derrick, J. W. Lewis, J. H. Wood, J. Broadbear and H. Plumer. 1995. *Analgesic*, 1:4-6, 386
3. SMART (Siemens Molecular Analysis Research Tool) 1995, V4.014 copyright 1989-95, Siemens Analytical X-ray, Madison, WI, USA.
4. SAINT (Siemens Area detector INTEGRATION) program. 1995. Siemens Analytical X-ray, Madison, WI, USA.
5. XSCANS. 1995. Siemens Analytical X-ray, Madison, WI, USA.
6. SHELXTL. 1995. Rev. 5.03, Siemens Analytical X-ray.
7. A.C. Larson. 1970. 'Crystallographic Computing', Ed. F.R. Ahmed, Munksgaard, Copenhagen.
8. H. D. Flack. 1983. *Acta. Cryst.*, A39, 876.
9. M. Mackay and D. C. Hodgkin. 1955. *J. Chem. Soc.*, 3261.
10. L. Gylbert. 1973. *Acta. Cryst.*, B29, 1630.
11. J.P. Glusker, M. Lewis and M. Rossi. 1994. 'Crystal Structure Analysis for Chemists and Biologists', VCH.
12. J.L. Flippen-Anderson, C. George, C. M. Bertha and K. C. Rice. 1994. *Heterocycles*, 2, 39.
13. C. H. Mahler, E. D. Stevens, M. L. Trudell and S. P. Nolan. 1996. *Acta. Cryst.*, C52, 3193.
14. A. H. Beckett and A. F. Casy. 1954. *J. Pharm. Pharmacol.*, 6, 986.
15. M. E. Amato, G. Bandoli, A. Grassi, M. Nicolini and G. C. Pappalardo. 1990. *J. Chem. Soc. Perkin Trans.* 2, 1757.
16. A. G. Michel, M. Proulx, G. Everard, B. Nrberg and E. Milchert. 1988. *Can. J. Chem.*, 66, 2498.
17. C. Wongweichintana, E. M. Holt and N. Pudie. 1984. *Acta. Cryst.*, C40, 1486.
18. C.P. Brock, S. Kottayil, D. A. Butterfield and P.A. Crooks. 1996. *Acta. Cryst.*, C52, 122.
19. A. C. Le Dain, B. W. Madsen, B. W. Skelton and A. H. White. 1992. *Aust.J.Chem.*, 45, 635.
20. D. Schollmeyer, D. Keilhofer and U. Pindur. 1995. *Acta. Cryst.*, C51, 502.
21. A.G. Michel and N. Michel-Dewez. 1990. *Acta. Cryst.*, C46, 405.