Robust Digital Control for Boost DC-DC Converter

Main Article Content

Yoshihiro Ohta
Kohji Higuchi

Abstract

If the duty ratio, load resistance and input voltage in boost DC-DC converter are changed, the dynamic characteristics is varied greatly, that is, boost DCDC converter has non-linear characteristics. In many applications of DC-DC converters, the load cannot be specified in advance, and it will be changed suddenly from no load to full load. In the boost DCDC converter system used a conventional single controller cannot be adapted to change dynamics and it occurs large output voltage variation. In this paper, an approximate 2-Degree-of-Freedom (2DOF) digital controller for suppressing the change of step response characteristics and variation of output voltage in the load sudden changes is proposed. Experimental studies using micro-processor for controller demonstrate that this type of digital controller is effective to suppress variations.

Article Details

How to Cite
Ohta, Y., & Higuchi, K. (2011). Robust Digital Control for Boost DC-DC Converter. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 10(1), 68–73. https://doi.org/10.37936/ecti-eec.2012101.170464
Section
Electrical Power Systems

References

[1] L. Guo, J. Y. Hung, and R. M. Nelms, “Digital controller Design for buck and Boost Converters Using Root Locus,” IEEE IECON 2003, pp.1864-1869, 2003.

[2] S. Hiti, and D. Borojevi´c, “Robust Nonlinear Control for Boost Converter,” IEEE transactions on power electronics, Vol.10, No.6, pp.651-658, 1995.

[3] P. Mattavelli, “Digital Control of dc-dc Boost Converters with Inductor Current Estimation,” IEEE Applied Power Electronics Conference and Exposition, pp.74-80, 2004.

[4] C. Kranz, “Complete Digital Control Method for PWM DC-DC Boost Converter,” IEEE Power Electronics Specialist Conference 2003, pp.951-956, 2003.

[5] J. A. Ramirez, I. Cervantes, G. E. Perez, P. Maya, and A. Morales, “A Stable Design of PI Control for DC-DC Converters with an RHS Zero,” IEEE transactions on circuits and systems, Vol.48, No.1, pp.103-106, 2001.

[6] J. Roh, “High-Performance Error Amplifier for Fast Transient DC-DC Converters,” IEEE transactions on power electronics, Vol.52, No.9, pp.591-595, 2005.

[7] H. K. Lam, T.H.Lee, F. H. F. Leung and P. K. S. Tam, “Fuzzy Control of DC-DC Switching Converters Stability and Robustness Analysis,” IEEE IECON 2001, pp.899-902, 2001.

[8] F. B. Cunha and D. J. Pagano, “Limitations in the Control of a DC-DC Boost Converter,” IFAC 15th Triennia World Congress, pp.216-222, 2002.

[9] C. Chan, “A Nonlinear Control for DC-DC Power Converters,” IEEE transactions on power electronics, Vol.22, No.1, pp.216-222, 2007.

[10] P. Gupta and A. Patra, “Hybrid Sliding Mode Control of DC-DC Power Converter Circuits,” IEEE TENCON 2003, pp.259-263, 2003.

[11] A. Kugi and K. Schlacher, “Nonlinear H∞-Controller Design for a DC-to-DC Power Converter,” IEEE transactions on control systems technology, vol.7, No.2, pp.230-237, 1999.

[12] K. Higuchi, K. Nakano, T. Kajikawa, E. Takegami, S. Tomioka, K. Watanabe, “A New Design of Robust Digital Controller for DCDC Converters,” IFAC 16th Triennial World Congress, (CD-ROM), 2005.

[13] K. Higuchi, E. Takegami, K. Nakano, T. Kajikawa, S. Tomioka, “Digital Robust Control for DC-DC Converter with Second-Order Characteristics,” ECTI-CON'2009, pp.161-169, 2009.

[14] S. Sasaki, and H. Watanabe, “Analysis of Multiple Operating Points for Dynamical Control of Switching Power Converters,” IEIC Technical Report, pp.33-38, 2005.