Utilizing the Cuckoo Optimization Algorithm for Selective Harmonic Elimination Strategy in the Cascaded Multilevel Inverter

Main Article Content

Ali Ajami
Behrouz Mohammadzadeh
Mohammad Reza Jannati Oskuee

Abstract

There are several procedures to solve the selective harmonic elimination (SHE) problem. In this paper, the elimination of undesired harmonics in a multilevel inverter with equal DC sources by using cuckoo evolutionary optimization method is presented. SHE is an efficient method for achieving the desired fundamental component and eliminating selection harmonics. The recently developed evolutionary optimization method named cuckoo (COA) is used to solve the nonlinear transcendental equations of SHE problem. To verify the presented method accuracy, simulation and experimental results are provided for a 7-level cascaded multi-level inverter. The feasibility and effectiveness of the proposed algorithm is evaluated with intensive simulation and experimental studies. The obtained results show that the cuckoo algorithm is more e‑cient than Bee algorithm (BA) and Genetic algorithm (GA) in eliminating the selective harmonics which cause the lower total harmonic distortion (THD) in the output voltage.

Article Details

How to Cite
Ajami, A., Mohammadzadeh, B., & Oskuee, M. R. J. (2013). Utilizing the Cuckoo Optimization Algorithm for Selective Harmonic Elimination Strategy in the Cascaded Multilevel Inverter. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 12(1), 7–15. https://doi.org/10.37936/ecti-eec.2014121.170799
Section
Electrical Power Systems

References

[1] Rodriguez, J. Bernet, S. Bin Wu Pontt, and J.O. Kouro, S., "Multilevel voltage-source- converter topologies for industrial medium-voltage drives," IEEE Trans. Ind. Electron., vol. 54, pp. 2930-2945, Dec. 2007.

[2] Q. Song and W. Liu, "Control of a cascade STATCOM with star conguration under un balanced conditions," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 45-58, Jan. 2009.

[3] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S. C. Kim, "A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers," IEEE Trans. Energy Convers., vol. 26, no. 3, Sep. 2011.

[4] C. Guo, and C. Zhao, "Supply of an entirely passive AC network through a double-in feed HVDC system," IEEE Tran. Power Electron., vol. 24, no. 11, Nov. 2010.

[5] J.M Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C. PortilloGuisado, M.A.M Prats, J.I. Leon, N. Moreno-Alfonso, "Power-electronic systems for the grid integration of renewable energy sources: a survey," IEEE Trans. Ind. Electron., vol. 53, pp. 1002-1016, Jun. 2006.

[6] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B.Wu, J. Rodriguez, M. Perez, and J. I. Leon, "Recent advances and industrial applications of multilevel converters", IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, Aug. 2010.

[7] A. Ajami, A. Mokhberdoran, and M. R. J. Oskuee, "A new topology of multilevel voltage source inverter to minimize the number of circuit devices and maximize the number of output voltage levels," J. Elect. Eng. Tech., vol. 8, no. 6, pp. 1321-1329, May 2013.

[8] A. K. Sadigh, S. H. Hosseini, M. Sabahi, and G. B. Gharehpetian, "Double ying capacitor multi-cell converter based on modied phase-shifted pulse width modulation," IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1517-1526, Jun. 2010.

[9] N. Hatti, K. Hasegawa, and H. Akagi, "A 6.6 kV transformerless motor drive using a five-level diode-clamped PWM inverter for energy savings of pumps and blowers," IEEE Trans. Power Electron., vol. 24, no. 3, pp. 796-803, Mar. 2009.

[10] A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, "A hybrid cascade converter topology with series-connected symmetrical and asymmetrical diode clamped H-bridge cells," IEEE Trans. Power Electron., vol. 26, no. 1, pp. 51-65, Jan. 2011.

[11] P. W. Hammond, "A new approach to enhance power quality for medium voltage AC drives," IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 202-208, Jan./Feb. 1997.

[12] M. Malinowski, K. Gopakumar, J. Rodriquez, and M. Perez, "A survey on cascaded multilevel inverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197-2206, Jul. 2010.

[13] L. M. Tolbert, F. Z. Peng, T. Cunnyngham, and J. N. Chiasson, "Charge balance control schemes for cascade multilevel converter in hybrid electric vehicles", IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1058-1064, Oct. 2002.

[14] C.K. Duey, and R.P. Stratford, "Update of harmonic standard IEEE-519: IEEE recommended practices and requirements for harmonic control in electric power systems", IEEE Trans. Ind. Appl., vol. 25, no. 6, pp. 1025-1034, Nov./Dec. 1989.

[15] J. Rodriguez, J. Lai, and F. Peng, "Multilevel inverters: a survey of topologies, controls and applications," IEEE Trans. Ind. Appl., vol. 49, no. 4, pp. 724-738, Aug. 2002.

[16] A.M. Massoud, S.J. Finney, A. Cruden, and B.W. Williams, "Mapped phase-shifted space vector modulation for multilevel voltage source inverters," IET Electr. Power Appl., vol. 1, no. 4, pp. 622-636, Jul. 2007.

[17] M.T. Bina, "Generalised direct positioning approach for multilevel space vector modulation: theory and implementation," IET Electr. Power Appl., vol. 1, no. 6, pp. 915-925, Nov. 2007.

[18] J. I. Leon, S. Vazquez, J. A. Sanchez, R. Portillo, L. G. Franquelo, J. M. Carrasco, and E. Dominguez, "Conventional space-vector modulation techniques versus the single-phase modulator for multilevel converters," IEEE Trans. Ind. Electron., vol. 57, no. 7, Jul. 2010.

[19] N. Yousefpoor, S. H. Fathi, N. Farokhnia, and H. A. Abyaneh, "THD minimization applied directly on the line-to-line voltage of multilevel inverters," IEEE Trans. Ind. Electron., vol. 59, no. 1, Jan. 2012.

[20] Y. Sahali, and M. K. Fellah, "New approach for the symmetrical multilevel inverters control: Optimal minimization of the total harmonic distortion (OMTHD technique)," Proc. IEEE ISIE, Ajaccio, France, May 4-7, 2004.

[21] H. S. Patel, and R. G. Hoft, "Generalized harmonic elimination and voltage control in thyristor inverters: Part I-Harmonic elimination," IEEE Trans. Ind. Appl., vol. IA-9, no. 3, pp. 310-317, May 1973.

[22] W. Fei, X. Du, and B. Wu, "A generalized half-wave symmetry SHE-PWM formulation for mul-tilevel voltage inverters," IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3030-3038, Sep. 2010.

[23] H. Lou, C. Mao, J. Lu, D. Wang, and W.-J. Lee, "Pulse width modulation AC/DC converters with line current harmonics minimization and high power factor using hybrid particle swarm optimization," IET Power Electron., vol. 2, no. 6, pp. 686-696, Nov. 2009.

[24] J. Chiasson, L.M. Tolbert, K. Mckenziek, and Z. Du, "Eliminating harmonics in a multilevel converter using resultant theory," Proc. Power Electron. Specialists, 2002, pp. 503-508.

[25] C. Silva, and J. Oyarzun, "High dynamic control of a PWM AC/DC converter using harmonic elimination," 32nd Ann. Conf. IEEE Ind. Electron. Soc. (IECON 2006), Paris, France, 2006, pp. 2569-2574.

[26] B. Ozpinecib, L. M. Tolbert, and J.N. Chiasson, "Harmonic optimization of multilevel converters using genetic algorithms," IEEE Power Electron. Lett., vol. 3, no. 3, pp. 92-95, Sep. 2005.

[27] H. Taghizadeh, and M. T. Hagh, "Harmonic elimination of cascade multilevel inverters with non-equal DC sources using particle swarm optimization," IEEE Trans. Ind. Electron., vol. 57, no. 11, Nov. 2010.

[28] A. Kavousi, B. Vahidi, R. Salehi, M. K. Bakhshizadeh, N. Farokhnia, and S. H. Fathi, "Application of the Bee algorithm for selective harmonic elimination strategy in multilevel inverters," IEEE Trans. Power Electron., vol. 27, no. 4, Apr. 2012.

[29] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, "A survey on cascaded multi-level inverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197-2206, Jul. 2010.

[30] Sirisukprasert, and Siriroj, Optimized harmonic stepped-waveform for mul-tilevel inverter [Online]. Available: http://www.worldcatlibraries.org

[31] R. Rajabioun, "Cuckoo optimization algorithm," Applied Soft Computing, vol. 1, pp. 5508-5518, Dec. 2011.

[32] H. Kahramanli, "A Modied cuckoo optimization algorithm for engineering optimization," Int. J. Future Comput. Commun., vol. 1, No. 2, Aug. 2012.

[33] M. Mokhtarifard, R. Noroozian, and S. Molaei, "Determining the optimal placement and capacity of DG in intelligent distribution networks under uncertainty demands by COA," Proc. 2nd Iranian Smart Grids (ICSG), 2012.