A dynamic model for series and parallel resistance of photovoltaic cell using material properties extraction and energy tunnel

Main Article Content

Kotchapong Sumanonta
Pasist Suwanapingkarl
Pisit Liutanakul

Abstract

This article presents a novel model for the equivalent circuit of a photovoltaic module. This circuit consists of the following important parameters: a single diode, series resistance (Rs) and parallel resistance (Rp) that can be directly adjusted according to ambient temperature and the irradiance. The single diode in the circuit is directly related to the ideality factor (m), which represents the relationship between the materials and significant structures of PV module such as mono crystalline, multi crystalline and thin film technology.


 Especially, the proposed model in this article is to present the simplified model that can calculate the results of I-V curves faster and more accurate than other methods of the previous models. This can show that the proposed models are more suitable for the practical application.


In addition, the results of the proposed model are validated by the datasheet, the practical data in the laboratory (indoor test) and the onsite data (outdoor test). This ensures that the less than 0.1% absolute errors of the model can be accepted.

Article Details

How to Cite
Sumanonta, K., Suwanapingkarl, P., & Liutanakul, P. (2017). A dynamic model for series and parallel resistance of photovoltaic cell using material properties extraction and energy tunnel. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 16(1), 9–21. https://doi.org/10.37936/ecti-eec.2018161.171324
Section
Electrical Power Systems

References

[1] D. S. H. Chan and J. C. H. Phang, "Analytical method for the extraction of solar cell single and double diode model parameters from i-v characteristics," IEEE Trans. Electron. Devices, vol. 34, pp. 286-293, Mar. 1987.

[2] W. Xiao, W.G. Dunford and A. Capel, "A novel modeling method for photovoltaic cells," Proc. IEEE on Power Electron. Specialists Conference , 2004, pp. 1950-1956.

[3] G. Walker, "Evaluating mppt converter topologies using a matlab pv model," Int. J. elect. electron. eng., vol. 21, pp. 1-6, 2001.

[4] R. Khezzar, M. Zereg and A. Khezzar, "Modeling improvement of the four parameter model for photovoltaic modules," Solar Energy, vol. 110, pp. 452-462, Nov. 2014.

[5] D. Sera, R. Teodorescu and P. Rodriguez, "PV panel model based on datasheet values," Proc. IEEE Int. Conference Symp. Ind. Electron. , 2007, pp. 2392-2396.

[6] M. G. Villalva, J. R. Gazoli and E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1198-1208, May. 2009.

[7] F. Ghani, G. Rosengarten, and M. Duke, "The characterisation of crystalline silicon photo voltaic devices using the manufacturer supplied data," Solar Energy, Vol. 132, 2007, pp. 15-24, Jul. 2016.

[8] K. Hellali, "Modelisation d'une cellule photovoltaique : etude comparative," M.S. thesis, Universite Mouloud Mammride Tizi Ozou, 2012.

[9] M. Azzouzi, L. Iaeng Mazzouz and D. Popescu, "Matlab-simulink of photovoltaic system based on a two - diode model," Proc. World Congr. Eng. , 2014, pp. 2-4.

[10] M. Wolf and H. Rauscheback, "Series resistance effects on solar cell measurements," Advanced Energy Conv., Vol. 3, No. 2, pp. 455-479, Apl.-Jun. 1963.

[11] J. A. Gow and C. D.Manning, "Development of a photovoltaic array model for use in power-electronics simulation studies," Proc. IEE-Electric Power Applicat., pp. 193-200, Mar. 1999.

[12] K. Ishaque, Z. Salam and H. Taheri, "Accurate matlab simulink pv system simulator based on a two-diode model," IEEE Trans. Power Electron., Vol. 11, No. 2, pp. 179-187, Mar. 2011.

[13] E. F. Fernandez, J. Montes-Romero, J. Casa, P. Rodrigo and F. Almonacid, "Comparative study of methods for the extraction of concentrator photovoltaic module parameters," Solar Energy, Vol. 137, pp. 413-423, Aug. 2016.

[14] S. Shong we and M. Hanif Moin, "Comparative analysis of dierent single-diode pv modeling methods," IEEE Trans. Photovoltaic, Vol. 5, No.3, pp. 938-946, May 2015.

[15] M. S. Abdul Kareem and M. Saravanan, "A new method for accurate estimation of pv module parameters and extraction of maximum power point under varying environmental conditions," Turkish J. Elect. Eng. Comput. Sci., Vol. 24, No. 4, pp. 2028-2041, Apl. 2016.

[16] E. H. Rhoderick and R. H.Williams, Metal semiconductor contacts, Oxford University Press, United Kingdom, 1988.

[17] M. K. Fuentes, A simplified thermal model for flat-plate photovoltaic arrays, Sandia National laboratories, United State of America, 1987.

[18] P. Suwanapingkarl. "Power quality of analysis of future power network," Ph.D.dissertation, Northumbria University, Newcastle. [Online]. Available: http://nrl.northumbria.ac.uk/12625/1/suwanapingkarl.pasist_phd.pdf

[19] P. Hersch and K. Zweibel, Basic photovoltaic principles and methods, Printed in the United States of America, 1981.

[20] W. Shockley, "The theory of p-n junction in semiconductors and p-n junction in transistors," Bell syst. Tech. J., Vol. 28, No. 3 pp. 435-489, Jul. 1949.

[21] G.H. Parker. Tunneling in Schottky barriers. Ph.D.dissertation, California Institute of Technology, California. [Online]. Available: http://resolver.caltech.edu/CaltechETD:etd-06212004-113629

[22] J. R. Hauser, and P. M. Danbar, "A theoretical anal. of the current-voltage characteristics of solar cells (NASA-CR-138828," United Stage of America, The national Aeronautics and Space administration (NASA). 1974.

[23] F. A. Padovani and R. Stratton, "Field and themionic-field emission in Schotty bariers," Solid-State Electron., Vol. 9, No.7, pp. 695-707, Jul. 1966.

[24] M. K. Hudait and S. B. krupanidhi, "Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperature," J. Physica B. Condensed matter., Vol. 307,
pp.125-137, Dec. 2001.

[25] M. A. Green, "Solar cells: operating principles, tech. and syst. applicat.," Englewood Cliffs., Prentrice-Hall, 1982.

[26] C. T. Kroll and S. Wol Ranking, "A closer look on globalisation method for normalisation gene expression arrays," Nucleic Acid Res., Vol. 30, No. 11, pp. e50, 2002.

[27] K.F.Young and H. P. R. Frederikse, "Compilation of the static dielectric constant of inorganic solids," J. Physical Chemical Reference Data 2, Vol. 2, No. 2, pp. 313-410, 1973.

[28] M. Bashahu and P. Nkundabakura, "Review and tests of methods for the determination of the solar cell junction ideality factors," Solar Energy, Vol. 81, No.7, pp. 856-863, Jul. 2007.

[29] A. Garcia-Rivera, E. comesana, A. J. Garcia-loureior, R. Valin, J.A. Rodriguez and M. Vetter, "Simulation of a-Si:H dual junction solar cells," Proc. IEEE Spanish Conference Electron. Device , 2013, pp.373-376.

[30] S. Y. Kuo, M. Y. Hsieh, D. H. Hsieh, H. C. Kuo and F. I. Lai, "Devices modeling of the performance of Cu(In,Ga)Se2 solar cells with v-shaped bandgab profile," Int. J. Photo energy Article ID 186579, pp. 1-6, Jul. 2014.

[31] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Physic, Vol. 32, No. 3, pp. 510-519, Jun. 1961.

[32] M. A. Green, "General solar cell curve factor including the effect of ideality factor, temperature and series resistant," Solid-State Electron., Vol. 20, No. 3, pp. 265-266, 1977.

[33] H. L. Tsai, "Insolation-Oriented model of photovoltaic module using Matlab/Simulink," Solar Energy, Vol. 84, No. 7, pp. 1318-1326, Jul. 2010.

[34] L. Kennerud Kenneth, "Analysis of performance degradation in CdS solar cell," IEEE Trans. Aerospace Electron. Syst. , Vol. AES-5, No. 6, pp. 912-917, Dec. 1969.

[35] M. M. Subry and A. E. Ghitas, "Influence of temperature on method for determining silicon solarcell series resistance," J. Solar Energy Eng., Vol. 129, pp. 331-335, Aug. 2007.

[36] A. Emerson, C. Fabricio Bradaschia Marcelo Cavalcanti J. Aguinaldo and Jr. Nascimento, "Parameter Estimation Method to Improve the Accuracy of Photovoltaic Electrical Model," IEEE Trans. Photovoltaics, Vol. 6, No.1, pp. 278-285, Oct. 2016.

[37] D. H. Muhsen, A. B. Ghazali, T. Khatib and I. A. Abed, "Extraction of photovoltaic module model's parameters using an improved hybrid differential evolution / electromagnetis m-like algorithm," Solar Energy, Vol. 119, pp. 286-297, Dec. 2015.

[38] M. A. Green, "Solar cell fill factors: general graph and empirical expressions," Solid-State Electron., Vol. 24, No. 8, pp. 788-789, 1981.

[39] S. R. Wenham, M.A. Green, M.E. Watt and R. Corkish, "Appl. photovoltaics," Englewood Cliffs., TJ International Ltd., UK, 2007.

[40] H. Bellia, R. Youcef, and M. Fatima, "A detailed modeling of photovoltaic module using MATLAB," J. Astronomy Geophysics, Vol. 3, No.1, pp. 53-61, Jun. 2014.

[41] A. Orioli and A. Di, Gangi, "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic Modules on the basis of the tabular performance data," Appl. Energy, Vol. 102, pp. 1160-1177, Feb. 2013.

[42] M. S. Swaleh and M. A. Green, "Eect of shunt resistance and bypass diodes on the shadow tolerance of solar cell modules," Solar Cells, Vol. 5, pp. 183-198, Jan. 1982.

[43] C. M. Singal, "Analytical expressions for the series-resistance-dependent maximum power point and curve factor for solar cells," Solar Cells, Vol. 3, pp. 163-177, Mar. 1981.

[44] A.D. Vos, "The ll factor of a solar cell from a mathematical point of view," Solar Cells, Vol. 8, pp. 283-296, Apr. 1983.

[45] Bosch-solar energy. Bosch solar module c-Si M60. [Online]. Available: http://www.neutek-energy.com.au/bosch-solar/bosch-solar-module-c-si-m-60

[46] G.H. Parker. Photowatt. Photowatt PWX 100. [Online]. Available: http://www.proidea.hu/bps-business-power-systems-107698/photowatt-napelemek-252476/PW%20X100.pdf

[47] G.H. Parker. Sharp. Sharp NA-F121 (G5). [Online]. Available: http://www.gehrlicher.com/fileadmin/content/pdfs/en/modules/Sharp_NA-F121_en.pdf

[48] "SimPowerSystems User's Guide for Use with Simulink R2014a.,"Hydro-Quebec and TransEnergie Technologies.,

[49] The International Electrotechnical Commission (IEC). 2005. International standard for IEC Std. 61215, Crystalline silicon terrestrial photovoltaic (PV) modules-design qualication and type approval. IEEE Std. 61215-2005-04, (edn.2).

[50] The International Electrotechnical Commission (IEC). 2008. International standard for IEC Std. 61646, Thin-film terrestrial photovoltaic (PV) modules-design qualification and type approval. IEEE Std. 61646.

[51] D. Chenvidhya, T. Srisaksomboon and M. Seapan, "Test report PV modules performance (CSSC/PV/075)," Thailand, Rep., CES Solar Cell Testing Center (CSSC).

[52] W. Marion, A. Anderberg, C. Deline, S. Glick, M. Muller, G. Perrin, J. Rodriguez, S. Rummel, K. Terwilliger and T. J. Silverma. "User's manual for data for validating models for PV module performance (NREL/TP-5200-61610)," United States of America,: The National Renewable Energy Laboratory (NREL).

[53] Meyer burger. Pasan Solar simulator. Pulse solar simulator 3b and SunSim 3b software. [Online]. Available: http://www.eurac.edu/en/research/technologies/renewableenergy/publications/Documents/SolaRE-PV_Flyer_EN.pdf