The Parameterization of All Disturbance Observers for Time-Delay Plants

Main Article Content

Kou Yamada
Iwanori Murakami
Yoshinori Ando
Masahiko Kobayashi
Yoichi Imai

Abstract

We examine the parameterization of all disturbance observers for time-delay plants. Disturbance observers have been used to estimate unknown disturbance in plants. There have been several works on design methods of disturbance observers for time delay plants but no published work on the parameterization of all disturbance observers for time-delay plants. We propose the parameterization of all disturbance observers for time-delay plants and that of all linear functional disturbance observers for time-delay plants.

Article Details

How to Cite
Yamada, K., Murakami, I., Ando, Y., Kobayashi, M., & Imai, Y. (2009). The Parameterization of All Disturbance Observers for Time-Delay Plants. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 9(1), 40–48. https://doi.org/10.37936/ecti-eec.201191.172263
Section
Research Article

References

[1] K. Ohishi, K. Ohnishi and K. Miyachi, Torque speed regulation of DC motor based on load torque estimation, Proc. IEEJ IPEC-TOKYO, Vol.2, pp.1209-1216, 1983.

[2] S. Komada and K. Ohnishi, Force feedback control of robot manipulator by the acceleration tracing orientation method, IEEE Transactions on Industrial Electronics, Vol.37, No.1, pp.6-12, 1990.

[3] T. Umeno and Y. Hori, Robust speed control of DC servomotors using modern two degrees-of-freedom controller design, IEEE Transactions on Industrial Electronics, Vol.38, No.5, pp.363-368, 1991.

[4] M. Tomizuka, On the design of digital tracking controllers, Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, Vol.115, pp.412-418, 1993.

[5] K. Ohnishi, M. Shibata and T. Murakami, Motion control for advanced mechatronics, IEEE/ASME Transaction on Mechatronics, Vol.1, No.1, pp.56-67, 1996.

[6] H.S. Lee and M. Tomizuka, Robust motion controller design for high-accuracy positioning systems, IEEE Transactions on Industrial Electronics, Vol.43, No.1, pp.48-55, 1996.

[7] T. Mita, M. Hirata, K. Murata and H. Zhang, H1 control versus disturbance-observer-based control, IEEE Transactions on Industrial Electronics, Vol.45, No.3, pp.488-495, 1998.

[8] H. Kobayashi, S. Katsura and K. Ohnishi, An analysis of parameter variations of disturbance observer for motion control, IEEE Transactions on Industrial Electronics, Vol.54, No.6, pp.3413-3421, 2007.

[9] G. Zames, Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and approximate inverse, IEEE Transactions on Automatic Control, Vol.26, pp.301-320, 1981.

[10] D.C. Youla, H. Jabr, J.J. Bongiorno, Modern Wiener-Hopf design of optimal controllers. Part I, IEEE Transactions on Automatic Control, Vol.21, pp.3-13, 1976.

[11] C.A. Desoer, R.W. Liu, J. Murray, R. Saeks, Feedback system design: The fractional representation approach to analysis and synthesis, IEEE Transactions on Automatic Control, Vol.25, pp.399-412, 1980.

[12] M. Vidyasagar, Control System Synthesis - A factorization approach, MIT Press, 1985.

[13] M. Morari, E. Za¯riou, Robust Process Control, Prentice-Hall, 1989.

[14] J.J. Glaria and G.C. Goodwin, A parameterization for the class of all stabilizing controllers for linear minimum phase systems, IEEE Transactions on Automatic Control, Vol.39, pp.433-434, 1994.

[15] K. Yamada, I. Murakami, Y. Ando, T. Hagiwara, Y. Imai and M. Kobayashi, The parametrization of all disturbance observers, ICIC Express Letters, Vol.2, pp.421-426, 2008.

[16] M. Basin, E. Sanchez and R. Martinez-Zuniga, Optimal linear ¯ltering for systems with multiple state and observation delays, International Journal of Innovative Computing, Information and Control, Vol.3, No.5, pp.1309-1320, 2007.

[17] K. Gu, V.L. Kharitonov and J. Chen, Stability of time-delay systems, Boston, MA, Birkauser, 2003.

[18] E.T. Jeung, D.C. Oh, J.H. Kim and H.B. Park, Robust controller design for uncertain systems with time delays: LMI approach, Automatica, Vol.32, No.8, pp.1229-1131, 1996.

[19] S.I. Niculescu, Delay effects on stability: A robust control approach, Berlin, Springer, 2001.

[20] X.M. Zhu, C.C. Hua and S. Wang, State feedback controller design of networkedd control systems with time delay in the plant, International Journal of Innovative Computing, Information and Control, Vol.4, No.2, pp.283-290, 2008.

[21] Y. Xia, M. Fu and P. Shi, Analysis and synthesis of dynamical systems with time-delays, Berlin, Springer, 2009.

[22] K. Yamada and N. Matsushima, A design method for Smith predictors for minimum-phase time-delay plants, ECTI Transactions on Computer and Information Technology, Vol.2, No.2, pp.100-107, 2005.

[23] K. Yamada, T. Hagiwara and H. Yamamoto, Robust Stability condition for a class of time-delay plants with uncertainty, ECTI Transactions on Electrical Eng., Electronics, and Communications, Vol.7, No.1, pp.34-41, 2009.

[24] K. Yamada, Y. Ando, I. Murakami, M. Kobayashi and N. Li, A design method for robust stabilizing simple repetitive controllers for time-delay plants, International Journal of Innovative Computing, Information and Control, in press.

[25] T. Hagiwara, K. Yamada, I. Murakami, Y. Ando and T. Sakanushi, A design method for robust stabilizing modified PID controllers for time-delay plants with uncertainty, International Journal of Innovative Computing, Information and Control, in press.

[26] C.N. Nett, C.A. Jacobson and M.J. Balas, A connection between state-space and doubly coprime fractional representation, IEEE Transactions on Automatic Control, Vol.29, pp.831-832, 1984.