Super Ultrawideband Planar Inverted F Antenna on Paper based Substrate with Low SAR

Main Article Content

Sakshi Kumari
Vibha Rani Gupta

Abstract

In this paper, a super ultrawide band planar inverted F antenna (PIFA) has been proposed for wearable applications on a low cost, ecofriendly paper-based substrate. This work is a first and important step towards the progression of conformal flexible antennas for a body area network. The proposed antenna has measured impedance bandwidth of 10.6 GHz, which covers almost all the bands of a wireless body area network i.e. GSM (880-960 MHz), GPS (1565-1585 MHz), DCS (1710-1880 MHz), PCS (1850-1990 MHz), UMTS (1920-2170 MHz), ISM (2.4-2.4835 GHz), WiMAX (3.3-3.8 GHz), HIPERLAN (5.15-5.35 GHz), WLAN (5.725-5.850 GHz) and UWB (3.1-10.6 GHz). Initially, the electrical characteristics of paper are extracted using Cavity Resonator and Transmission line method and then used for the design and fabrication of the proposed antenna. The measured results are in good agreement with the simulated results. This paper also focuses on analysis of the effect of electromagnetic absorption in terms of specific absorption rate for a human arm with frequency exposure at 0.9 GHz, 1.5 GHz, 1.8 GHz, 3.5 GHz, 2.45 GHz, 5.2 GHz and 5.8 GHz and is found to be within the recommended limit by FCC.

Article Details

How to Cite
Kumari, S., & Gupta, V. R. (2019). Super Ultrawideband Planar Inverted F Antenna on Paper based Substrate with Low SAR. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 17(2), 204–213. https://doi.org/10.37936/ecti-eec.2019172.225337
Section
Publish Article

References

[1] R. Negraa , I. Jemilia and A. Belghith, “Wireless Body Area Networks: Applications and technologies”, Second International Workshop on Recent Advances on Machine-to-Machine Communications, Procedia Computer Science, Elsivier, Vol.83, pp.1274-1281, 2016.
[2] I. Zahraoui, A. Errkik, J. Zbitou, E. Abdelmounim, L.E. Abdellaoui and A. Mediavilla, “New Low Cost Printed Antenna CPW-Fed for Global Positioning System, Personal Communication System and Worldwide Interoperability for Microwave Access Band Applications”, International Journal of Engineering Transaction B: Applications, Vol. 29, No.8, pp.1056-1061, 2016.
[3] I. J. G. Zuazola and J. C. Batchelor, “Compact Multiband PIFA type Antenna”, Electronics Letter, Vol.45, 2009.
[4] P. J. Soh, G. A. E. Vandenbosch, S. L. Ooi and N. M. Rais, “Design of a Broadband All Textile Slotted PIFA”, IEEE Transactions on Antennas and Propagation, Vol.60, No.1, pp.379-384, 2012 [5] I. Gil and R. F. García, “Wearable PIFA antenna implemented on jean substrate for wireless body area network”, Journal of Electromagnetic Waves and Applications, pp.1-11, 2017.
[5] I. Gil and R. F. García, “Wearable PIFA antenna implemented on jean substrate for wireless body area network”, Journal of Electromagnetic Waves and Applications, pp.1-11, 2017.
[6] M. I. Ahmed, M. F. Ahmed, A. A. Shaalan, “Investigation and Comparison of 2.4 GHz Wearable Antennas on Three Textile Substrates and Its Performance Characteristics”, Open Journal of Antennas and Propagation, Vol.5, pp.110-120, 2017.
[7] K. Zeouga, L. Osman, A. Gharsallah, B. Gupta, “Truncated Patch Antenna on Jute Textile for Wireless Power Transmission at 2.45 GHz”, International Journal of Advanced Computer Science and Applications, Vol.9, No.1, pp.301-305, 2018.
[8] G. Shaker, S. S. Naeini, N. Sangary, and M. M. Tentzeris, “Inkjet Printing of Ultrawideband (UWB) Antennas on Paper-Based Substrates”, IEEE Antennas and Wireless Propagation Letters, Vol.10, pp.111-114, 2011.
[9] H. P. Phan, T. P. Vuong, P. Benech, P. Xavier, P. Borel and A. Delattre, “Low-Cost Wideband Antenna on Paper Substrate”, in 11th IEEE European Conference on Antennas and Propagation (EUCAP), 2017.
[1] H. F. Abutarboush and A. Shamim, “Paper-Based Inkjet-Printed Tri-Band U-Slot Monopole Antenna for Wireless Applications”, IEEE Antennas and Wireless Propagation Letters, Vol.11, pp.1234-1237, 2012.
[2] W. N. N. W. Marzudi, Z. Z. Abidin, S. H. Dahlan, K. N. Ramli and M. R. Kamarudin, “Performance of star patch antenna on a paper substrate material”, ARPN Journal of Engineering and Applied Sciences, Vol.10, No.19, pp.8606-8612,2015.
[3] D. S. Marotkar and P. L. Z. Yeshwantrao, “Microstrip Antenna with Photographic Paper Substrate for WLAN”, International Journal of Informatics and Communication Technology, Vol 7, No.2, pp.67-70. 2018.
[4] A. M. Mansour, N. Shehata, B. M. Hamza and M. R. M. Rizk, “Efficient Design of Flexible and Low-Cost Paper-Based Inkjet-Printed Antenna”, International Journal of Antennas and Propagation, pp.1-6, 2015.
[5] D. E. Anagnostou, A. A. Gheethan, A. K. Amert and K.W.Whites, “A Direct-Write Printed Antenna on Paper-Based Organic Substrate for Flexible Displays and WLAN Applications” Journal of Display Technology, Vol.6, No.11, pp.558-564, 2010.
[6] R. Moro, M. Bozzi, S. Kim and M. Tentzeris, “Novel Inkjet-Printed Substrate Integrated Waveguide (SIW) Structures on Low-Cost Materials for Wearable Applications”, in Proc. of the 42nd European Microwave Conference, Netherlands, 2012.
[7] S. Kim, B. Cook, T. Le, J. Cooper, H. Lee, V. Lakafosis, R. Vyas, R. Moro, M. Bozzi, A. Georgiadis, A. Collado and M.M. Tentzeris, “Inkjet-printed antennas, sensors and circuits on paper substrate”, IET Microwave and Antenna Propagation, Vol.7, No.10, pp.858–868, 2013.
[8] S. Kim, A. Georgiadis and M. M. Tentzeris, “Design of Inkjet-Printed RFID-Based Sensor on Paper: Single and Dual-Tag Sensor Topologies”, Sensors, Vol.18, No.1958, 2018.
[9] A. Rida, L. Yang, R. Vyas and M.M. Tentzeris, “Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications”, IEEE Antennas and Propagation Magazine, Vol. 51, No.3, pp.13-23, 2009. doi: 10.1109/MAP.2009.5251188.
[10] F. Raval, Y. Khatavkar and K. Patel, “Patch antenna array using paper as substrate”, International Journal of Microwave and Optical Technology, Vol.13, No.1, pp.26-31, 2018.
[11] S. Kumari and V. R. Gupta, “Measurement of Specific Absorption Rate of Monopole Patch Antenna on human arm”, International Journal of Microwave and Optical Technology, Vol.10, No.3, pp.190-194, 2015.
[12] A.Verma, G. Saini, “Different Size Reduction Techniques of PIFA Antenna: A Review”, ICRTED, Vol.1 spl issue, pp.1694-2310, 2014 .
[13] H. T.Chattha, Y. Huang, and Y. Lu, “PIFA Bandwidth Enhancement by Changing the Widths of Feed and Shorting Plates”, IEEE Antennas and Wireless Propagation Letters, Vol. 8, pp.637-640, 2009.
[14] R. Feick, H. Carrasco, M. Olmos and H.D. Hristov, “PIFA input bandwidth enhancement by changing feed plate silhouette”, Electronics Letters, Vol.40, No.15, 2004.
[15] D. B. Lin, I.T. Tang and M. Z. Hong, “A compact Quad Band PIFA by tuning the defected ground structure for mobile phones”, Progress in Electromagnetics Research B, Vol.24, pp.173–189, 2010.
[16] F. Afrin , W. A. Yenisey, M. A. A. Syed and R. Farhin, “Design of Slot Loaded Planar Inverted F antenna for Ultra-Wideband Applications”, in IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) Conference, 2017.
[17] K. L. Wong, and C. H. Huang, “Printed PIFA with a coplanar Coupling feed for Penta-band operation in the mobile Phone”, Micowave and Optical Technology Letters, Vol.50, No.12, pp.3181-3186, 2008.
[18] A. Rida, L. Yang, and M.M. Tentzeris, “Design and Characterization of Novel Paper-based Inkjet-Printed UHF Antennas for RFID and Sensing Applications”, in IEEE Conference, 2007.
[19] H. P. Phan, T.P. Vuong, P. Benech, P. Xavier, and P. Borel, “Printed Flexible Wideband Microstrip Antenna for Wireless Applications”, in International Conference on Advanced Technologies for Communications (ATC), pp.384-387, 2016.
[20] A. Rida, L. Yang, R. Vyas, S. Bhattacharya and M. M. Tentzeris, “Design and Integration of Inkjet printed Paper-based UHF Components for RFID and Ubiquitous Sensing Applications”, in Proc. of the 37th European Microwave Conference, Germany, 2007.
[21] S. H. Chang, H. Kuan, H. W. Wu, R. Y. Yang, and M. H. Weng, “Determination of Microwave Dielectric Constant by Two Microstrip Line Method Combined with EM Simulation”, Microwave and Optical Technology Letters, Vol.48, No.11, pp.2199–2201, 2006.
[22] D. C. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak, M. M.Tentzeris and J. Papapolymerou, “Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz”, IEEE Transactions on Microwave Theory and Techniques, Vol.52, No.4, pp.1343-1252, 2004.
[23] M.S.Venkatesh and G.S.V. Raghavan, “An overview of dielectric properties measuring techniques”, Canadian Biosystems Engineering, Vol.47, pp.7.15-7.30, 2005.
[24] Calculation of the Dielectric Properties of Body Tissues in the frequency range 10 Hz – 100 GHz, Italian National Research Council, Institute of Applied Physics. Available Online: https://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php
[25] D.L. Means and K.W. Chan, “Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields”, FCC Supplement C, ed. 97-01, 2001.
[26] P. McEvoy, M. John, S. Curto and M. Amman , “Group delay performance of ultra wideband monopole antennas for communication applications”, Antennas and Propagation Conference (LAPC 2008), pp. 377-380. Loughborough, 2008.