A THz Metamaterial Absorber with Multiple Polarization: Insensitive, Sensitive, and Tunable
Main Article Content
Abstract
Terahertz (THz) absorbers are gaining interest in many applications. In this paper, we present the design and simulation of a multiband metamaterial absorber (MMA) with combined polarization properties and prominent absorption at 2.2 THz and 3.9 THz. The MMA comprises two square split-ring resonators and one square ring resonator placed on top of a polyimide dielectric spacer, offering multiband absorption characteristics with maximum absorptivity of 93.18% and 96.09%, respectively. The most protruding feature of this design is that it displays multiple polarization characteristics, including insensitivity, sensitivity, and tunability, even though the structure is similar to those of conventional absorbers. Firstly, the distinctly visible absorption spectra at 1.8 THz, gradually diminishes with an increase in polarization angle and then completely vanishes for TM polarization. Secondly, the prominent band at 2.2 THz is insensitive to changes in polarization of the incident wave, whereas, at 3.9 THz, the absorption band displays polarization tunability characteristics. Due to the multiple characteristics displayed by the structure, this MMA can be simultaneously used for several applications in the terahertz frequency regime such as imaging, terahertz spectroscopy, sensing, and stealth technology.
Article Details
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
- Creative Commons Copyright License
The journal allows readers to download and share all published articles as long as they properly cite such articles; however, they cannot change them or use them commercially. This is classified as CC BY-NC-ND for the creative commons license.
- Retention of Copyright and Publishing Rights
The journal allows the authors of the published articles to hold copyrights and publishing rights without restrictions.
References
E. Shamonina and L. Solymar, “Metamaterials: How the subject started,” Metamaterials 1, vol. 1, pp. 12–18, 2007.
J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3966, 2000.
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, vol. 292, no. 5514, pp. 77-79, 2001.
M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell ’ s equations,” Photonics Nanostructures - Fundam. Appl., vol. 6, pp. 87–95, 2008.
R. W. Ziolkowski and C. Cheng, “Existence and design of trans-vacuum-speed metamaterials,” Phys. Rev. E, vol. 68, pp. 1–18, 2003.
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
D. S. Wilbert, M. P. Hokmabadi, J. Martinez, P. Kung, and S. M. Kim, “Terahertz metamaterials perfect absorbers for sensing and imaging,” SPIE Proc. Ser., vol. 8585, pp. 1–6, 2013.
S. Xiaopeng, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li. “Polarization-independent wide-angle triple-band metamaterial absorber.” Optics express, vol. 19, no. 10, pp. 9401–9407, 2011.
P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, and Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics Nanostructures - Fundam. Appl., vol. 11, no. 1, pp. 89–94, 2013.
Y. Lee, P. Tuong, H. Zheng, J. Rhee, W.Jang, “An application of metamaterials: perfect absorbers,” J. Korean Phys. Soc., vol. 60, pp. 1203–1206, 2012.
O. Ayop, M. K. A. Rahim, N. A. Murad, N. A. Samsuri, F. Zubir, and H. A. Majid, “Dual-band metamaterial perfect absorber with nearly polarization-independent,” Appl. Phys. A, vol. 123, no. 1, p. 63, 2017.
G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B, vol. 97, no. 3, pp. 4–10, 2018.
Y. Zhang et al., “Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide,” IEEE Access, vol. 8, pp. 85154–85161, 2020.
A. Mohanty, O. P. Acharya, B. Appasani, and S. K. Mohapatra, “A multi-band terahertz metamaterial absorber based on a $Π$ and U-shaped structure,” Photonics Nanostructures-Fundamentals Appl., vol. 32, pp. 74–80, 2018.
Y.-L. Liao and Y. Zhao, “Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications,” Sci. Rep., vol. 10, no. 1, pp. 1–7, 2020.
N. I. Landy, S. Sajuyigbe , J. J. Mock , D. R. Smith , W. J. Padilla , “A Perfect Metamaterial Absorber”, Physical Review Letters, vol. 100, pp. 207402, 2008.
H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express, vol. 16, pp. 7181‒7188, 2008.
J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett., vol. 96, no. 25, pp. 2010–2013, 2010.
T.J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials”, Science, vol. 303, pp. 1494–1496, 2004.
S. Kalraiya, R. K. Chaudhary, R. K. Gangwar, and M. A. Abdalla, “Compact quad-band polarization independent metamaterial absorber using circular/square metallic ring resonator,” Mater. Res. Express, vol. 6, no. 5, p. 55812, 2019.
H. Tao et al., “Multiband Metamaterial Absorber at Terahertz Frequencies”,Chin. Phys. Lett., vol. 31, no. 5, pp. 1–4, 2015.
B. X. Wang, C. Tang, Q. Niu, Y. He, and R. Chen, “A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot,” Nanoscale Adv., vol. 1, no. 9, pp. 3621–3625, 2019.
O. Mohsen Daraei, K. Goudarzi, and M. Bemani, “A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons,” Opt. Laser Technol., vol. 122, 2020.
A.-X. Wang et al., “Six-band polarization-insensitive perfect metamaterial absorber using L-shaped resonators,” Appl. Phys. A, vol. 125, no. 5, p. 331, 2019.
H. Wakatsuchi, D. F. Sievenpiper, C. Christopoulos, “Designing flexible and versatile metamaterial absorbers”, IEEE Electromagn. Compat. Mag, vol. 5, no. 2, pp. 76–82, 2016.
M. Nejat and N. Nozhat, “Design, Theory, and Circuit Model of Wideband, Tunable and Polarization-Insensitive Terahertz Absorber Based on Graphene,” IEEE Trans. Nanotechnol., vol. 18, pp. 684–690, 2019.
S. Ramya and I. S. Rao, “Design of Polarization-Insensitive Dual Band Metamaterial Absorber,” Prog. Electromagn. Res., vol. 50, pp. 23–31, 2016.
W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings,” IEEE J. Quantum Electron., vol. 53, no. 1, pp. 2–7, 2017.
S. C. Bakshi, D. Mitra, and L. Minz, “A Compact Design of Multiband Terahertz Metamaterial Absorber with Frequency and Polarization Tunability,” Plasmonics, vol. 13, no. 6, pp. 1–10, 2018.
B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express, vol. 18, no. 22, pp. 23196–23203, 2010.
S Dash, A Patnaik, “Material selection for THz antennas”, Microwave and Optical Technology Letters., vol. 60, no. 5, pp. 1183–7, 2018.
B. Appasani, P. Prince, R. K. Ranjan, N. Gupta, V. K. Verma, “A Simple Multi-band Metamaterial Absorber with Combined Polarization Sensitive and Polarization Insensitive Characteristics for Terahertz Applications”, Plasmonics, vol. 14, no. 3, pp. 737–742, 2018.
Y. Shan Y et al. “Ultrathin flexible dual band terahertz absorber”, Opt. Commun, vol. 350, pp. 63–70, 2015.
X. Li, H. Liu, Q. Sun, N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber”, Photonics Nanostructures - Fundam. Appl.,vol. 15, pp. 81–88, 2015.
B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application”, J. Appl. Phys., vol. 117, no. 1, pp. 014504, 2015.
B. X. Wang, G. Z. Wang, L. L. Wang, “Design of a Novel Dual-Band Terahertz Metamaterial Absorber”, Plasmonics., vol. 11, no. 2, pp. 523–530, 2016.
B. Wang, L. Wang, G. Wang, B. Wang, L. Wang, and G. Wang, “Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator,” Appl. Phys. Express, vol. 10, pp. 034301-1–4, 2017.
B. Wang, “Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 4, p. 4700107, 2017.
B. X. Wang, Q. Xie, G. Dong, W. Q. Huang, “Design of triple-band polarization controlled terahertz metamaterial absorber”, Superlattices and Microstructures, vol. 114, pp. 225–32, 2018.
V. K. Verma et al. “An Octaband Polarization Insensitive Terahertz Metamaterial Absorber Using Orthogonal Elliptical Ring Resonators”, Plasmonics, vol. 15, no. 8, pp. 1–7, 2019.