A Novel Target Detection and Identifying Approach Using Polarimetric Radar Cross-Section and Matrix Correlation Coefficient

Main Article Content

Narathep Phruksahiran

Abstract

This paper presents a novel target detection and identifying approach using polarimetric radar cross-section and matrix correlation coefficient. We have adopted a polarimetric radar cross-section matrix correlation strategy (PRMC) algorithm using a matrix correlation approach based on the polarimetric radar cross-section. It is projected as an inverse scattering problem under the electromagnetic scattering model using polarimetric Physical Optics approximation. The experimental measurements using canonical targets carried out under semicontrolled conditions verify the performance of the developed procedures. Finally, the identification strategies' effectiveness is demonstrated in free-space conditions and a scene with a brick and autoclaved aerated concrete wall.

Article Details

How to Cite
Phruksahiran, N. (2024). A Novel Target Detection and Identifying Approach Using Polarimetric Radar Cross-Section and Matrix Correlation Coefficient. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 22(2). https://doi.org/10.37936/ecti-eec.2024222.249272
Section
Antenna, Wireless Propagation and Microwave

References

K. Sarabandi et al., ``Inverse scattering approaches in through-the-wall imaging,'' in Through-the-wall radar imaging, M.G. Amin, Ed., Boca Raton, FL, USA: CRC Press, 2011, pp. 185-218.

F. Soldovieri, F. Ahmad and R. Solimene, ``Validation of microwave tomographic inverse scattering approach via through-the-wall experiments in semicontrolled conditions,'' IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 123-127, Jan. 2011.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka and Y. Bayram, ``High-Frequency EM Characterization of Through-Wall Building Imaging,'' IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1375-1387, May 2009.

M. Thiel and K. Sarabandi, ``A Hybrid Method for Indoor Wave Propagation Modeling,'' IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2703-2709, Aug. 2008.

M. Dehmollaian and K. Sarabandi, ``Refocusing Through Building Walls Using Synthetic Aperture Radar,'' IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1589-1599, June 2008.

Y. -S. Yoon and M. G. Amin, ``Spatial Filtering for Wall-Clutter Mitigation in Through-the-Wall Radar Imaging,'' IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3192-3208, Sept. 2009.

F. Soldovieri and R. Solimene, ``Through-wall imaging via a linear inverse scattering algorithm,'' IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 513-517, Oct. 2007.

S. Wu, Y. Xu, J. Chen, S. Meng, G. Fang and H. Yin, ``Through-wall shape estimation based on UWB-SP radar,'' IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1234-1238, Sept. 2013.

F. Soldovieri, R. Solimene and G. Prisco, ``A multiarray tomographic approach for through-wall imaging,'' IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1192-1199, April 2008.

C. Debes, M.G. Amin and A.M. Zoubir, "Target detection in single- and multiple-view through-the-wall radar imaging,'' IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1349-1361, May 2009.

J. Laviada textit{et al.}, ``Broadband synthetic aperture scanning system for three-dimensional through-the-wall inspection,'' IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 97-101, Jan. 2016.

W. Zhang and A. Hoorfar, ``Three-dimensional real-time through-the-wall radar imaging with diffraction tomographic algorithm,'' IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4155-4163, July 2013.

A.S. Barzegar, A. Cheldavi, S.H. Sedighy and V. Nayyeri, ``3-D Through-the-Wall Radar Imaging Using Compressed Sensing,'' IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2022.

J.S. Lee and E. Pottier, ``Electromagnetic vector wave and polarization descriptors,'' in Polarimetric radar imaging from basics to applications, Boca Raton, FL, USA: CRC Press, 2009, pp. 31-52.

F. Weinmann, ``Ray tracing with PO/PTD for RCS modeling of large complex objects,'' IEEE Trans. Antennas Propag., vol. 54, no. 6, pp. 1797-1806, June 2006.

C. Bourlier and P. Pouliguen, ``Useful Analytical Formulae for Near-Field Monostatic Radar Cross Section Under the Physical Optics: Far-Field Criterion,'' IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 205-214, Jan. 2009.

H. Buddendick and T. F. Eibert, ``Acceleration of Ray-Based Radar Cross Section Predictions Using Monostatic-Bistatic Equivalence,'' IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 531-539, Feb. 2010.

C.A. Balanis, ``Scattering,'' in Advanced engineering electromagnetics, New York, USA: John Wiley & Sons, 1989, pp. 570-669.

Y. Bennani, F. Comblet and A. Khenchaf, ``RCS of Complex Targets: Original Representation Validated by Measurements—Application to ISAR Imagery,'' IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3882-3891, Oct. 2012.

N. Phruksahiran and M. Chandra, ``Polarimetric radar cross section under SAR geometry,'' Adv. Radio Sci., vol. 11, pp. 277-282, 2013.

R. Deban, H. Boutayeb, K. Wu and J. Conan, ``Deterministic Approach for Spatial Diversity Analysis of Radar Systems Using Near-Field Radar Cross Section of a Metallic Plate,'' IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 908-916, March 2010.

K. S. Chia and F. W. Hong, ``Investigation of Parameters That Affect the Acquired Near Infrared Diffuse Reflected Signals in Non-Destructive Soluble Solids Content Prediction,'' Eng. J., vol. 24, no. 6, pp. 79-90, Nov. 2020.

F. W. Hong, K. S. Chia, and X. Y. Yap, ``A Comparison between the Post- and Pre-dispersive Near Infrared Spectroscopy in Non-Destructive Brix Prediction Using Artificial Neural Network,'' Eng. J., vol. 25, no. 10, pp. 39-49, Oct. 2021.