Improvement of Line Stability Indices with Solar Photovoltaic Integration in Power System Network Improvement of Line Stability Indices with Solar Photovoltaic Integration in Power System Network

Main Article Content

Santosh Kumar Gupta
Vikash Kumar
Kanchan Bala
SHAHZAD AHSAN
Ashwini Tiwari
Zafar Ayub Ansari
Dhananjay Kumar
Ashish Ranjan
Arjun Kumar

Abstract

The stability of power systems is challenged by the rise of renewable energy sources, fast load changes, and increased consumption. The voltage stability index (VSI) is crucial for assessing power supply stability and triggering responses to voltage instability. This paper uses fast voltage stability index (FVSI), line stability factor (Lqp), and line stability index (Lmn) to evaluate the IEEE 14-bus and 118-bus systems. With solar photovoltaic generator (SPVG) integration at the most critical bus, these indices assess system stability under nominal and varied reactive power conditions. The main goal of the paper is to mitigate critical line severity by integrating PV systems, using Newton-Raphson load flow analysis in PSAT/MATLAB. Results show significant improvements in line indices with SPVG, notably reducing critical line
severity for the IEEE 14-bus (lines 5-1) and 118-bus (lines 44-43) systems.

Article Details

How to Cite
Gupta, S. K., Kumar, V. ., Bala, K. ., SHAHZAD AHSAN, Ashwini Tiwari, Ayub Ansari, Z. ., Kumar, D. ., Ranjan, A. ., & Kumar, A. . (2025). Improvement of Line Stability Indices with Solar Photovoltaic Integration in Power System Network: Improvement of Line Stability Indices with Solar Photovoltaic Integration in Power System Network. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 23(3). https://doi.org/10.37936/ecti-eec.2525233.259359
Section
Electrical Power Systems

References

C. Vournas, “Power System Voltage Stability,” in Encyclopedia of Systems and Control, T. Baillieul John and Samad, Ed., London: Springer London, 2013, pp. 1–7. doi: 10.1007/978-1-4471-5102-9_263-1.

A. Jalali and M. Aldeen, “Improving voltage stability margin using STATCOM-storage devices,” in 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Oct. 2016, pp. 1–6. doi: 10.1109/ISGTEurope.2016.7856185.

M. Klein, G. J. Rogers, S. Moorty, and P. Kundur, “Analytical investigation of factors influencing power system stabilizers performance,” IEEE Transactions on Energy Conversion, vol. 7, no. 3, pp. 382–390, 1992, doi: 10.1109/60.148556.

P. Kundur, J. Paserba, V. Vittal, and G. Andersson, “Closure of ‘Definition and Classification of Power System Stability,’” IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 446–446, Feb. 2006, doi: 10.1109/TPWRS.2005.861952.

M. A. Mostafa, M. E. El-Hawary, G. A. N. Mbamalu, M. M. Mansour, K. M. El-Nagar, and A. N. El-Arabaty, “Steady-state load shedding schemes: a performance comparison,” Electric Power Systems Research, vol. 38, no. 2, pp. 105–112, 1996, doi: https://doi.org/10.1016/S0378-7796(96)01068-1.

D. Hazarika and A. K. Sinha, “Method for optimal load shedding in case of generation deficiency in a power system,” International Journal of Electrical Power & Energy Systems, vol. 20, no. 6, pp. 411–420, 1998, doi: https://doi.org/10.1016/S0142-0615(97)00061-6.

M. Z. El-Sadek, G. A. Mahmoud, M. M. Dessouky, and W. I. Rashed, “Optimum load shedding for avoiding steady-state voltage instability,” Electric Power Systems Research, vol. 50, no. 2, pp. 119–123, 1999, doi: https://doi.org/10.1016/S0378-7796(98)00124-2.

M. M. Aman, G. B. Jasmon, H. Mokhlis, and A. H. A. Bakar, “Optimal placement and sizing of a DG based on a new power stability index and line losses,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 1296–1304, 2012, doi: https://doi.org/10.1016/j.ijepes.2012.05.053.

M. Chakravorty and D. Das, “Voltage stability analysis of radial distribution networks,” International Journal of Electrical Power & Energy Systems, vol. 23, no. 2, pp. 129–135, 2001, doi: https://doi.org/10.1016/S0142-0615(00)00040-5.

V. Balamourougan, T. S. Sidhu, and M. S. Sachdev, “Technique for online prediction of voltage collapse,” IEE Proceedings - Generation, Transmission and Distribution, vol. 151, no. 4, p. 453, 2004, doi: 10.1049/ip-gtd:20040612.

Y. Song, D. J. Hill, and T. Liu, “State-in-mode analysis of the power flow Jacobian for static voltage stability,” International Journal of Electrical Power & Energy Systems, vol. 105, pp. 671–678, 2019, doi: https://doi.org/10.1016/j.ijepes.2018.09.012.

Y. Wang, W. Li, and J. Lu, “A new node voltage stability index based on local voltage phasors,” Electric Power Systems Research, vol. 79, no. 1, pp. 265–271, 2009, doi: https://doi.org/10.1016/j.epsr.2008.06.010.

M. H. Haque, “Use of local information to determine the distance to voltage collapse,” in 2007 International Power Engineering Conference (IPEC 2007), 2007, pp. 407–412.

U. Sultana, A. B. Khairuddin, M. M. Aman, A. S. Mokhtar, and N. Zareen, “A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system,” Renewable and Sustainable Energy Reviews, vol. 63, pp. 363–378, 2016, doi: https://doi.org/10.1016/j.rser.2016.05.056.

M. Moghavvemi and F. M. Omar, “Technique for contingency monitoring and voltage collapse prediction,” IEE Proceedings: Generation, Transmission and Distribution, vol. 145, no. 6, pp. 634–640, 1998, doi: 10.1049/IP-GTD:19982355.

A. MOhamed, G. Jasmon, and S. Yusof PTI Asia Sdn Bti, “A STATIC VOLTAGE COLLAPSE INDICATOR USING LINE STABILITY FACTORS,” Journal of Industrial Technology, vol. 7, no. 1, pp. 73–85, 1998.

I. Musirin and T. K. Abdul Rahman, “Novel fast voltage stability index (FVSI) for voltage stability analysis in power transmission system,” in Student Conference on Research and Development, 2002, pp. 265–268. doi: 10.1109/SCORED.2002.1033108.

W. H. Tang et al., “A composite voltage stability index for integrated energy systems based on L-index and the minimum eigenvalue of reduced Jacobian matrix,” International Journal of Electrical Power & Energy Systems, vol. 141, p. 108136, Oct. 2022, doi: 10.1016/j.ijepes.2022.108136.

S. Khunkitti et al., “A comparison of the effectiveness of voltage stability indices in an optimal power flow,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, no. 4, pp. 534–544, Apr. 2019, doi: 10.1002/tee.22836.

M. Wang and J. V Milanović, “Simultaneous Assessment of Multiple Aspects of Stability of Power Systems With Renewable Generation,” IEEE Transactions on Power Systems, vol. 39, no. 1, pp. 97–106, 2024, doi: 10.1109/TPWRS.2023.3241862.

K. D. Dharmapala, A. Rajapakse, K. Narendra, and Y. Zhang, “Machine Learning Based Real- Time Monitoring of Long-Term Voltage Stability Using Voltage Stability Indices,” IEEE Access, vol. 8, pp. 222544–222555, 2020, doi: 10.1109/ACCESS. 2020.3043935.

X. Jia et al., “Static Voltage Stability Assessment Considering Impacts of Ambient Conditions on Overhead Transmission Lines,” IEEE Trans Ind Appl, vol. 58, no. 6, pp. 6981–6989, 2022, doi: 10.1109/TIA.2022.3195974.

S. Khunkitti, A. Siritaratiwat, and S. Premrudeepreechacharn, “A Many-Objective Marine Predators Algorithm for Solving Many-Objective Optimal Power Flow Problem,” Applied Sciences, vol. 12, no. 22, p. 11829, Nov. 2022, doi: 10.3390/app122211829.

S. Khunkitti, S. Premrudeepreechacharn, and A. Siritaratiwat, “A Two-Archive Harris Hawk Optimization for Solving Many-Objective Optimal Power Flow Problems,” IEEE Access, vol. 11, pp. 134557–134574, 2023, doi: 10.1109/ACCESS. 2023.3337535.

P. Kessel and H. Glavitsch, “Estimating the Voltage Stability of a Power System,” IEEE Transactions on Power Delivery, vol. 1, no. 3, pp. 346–354, 1986, doi: 10.1109/TPWRD.1986.4308013.

C. Li et al., “Optimal allocation of multi-type FACTS devices in power systems based on power flow entropy,” Journal of Modern Power Systems

and Clean Energy, vol. 2, no. 2, pp. 173–180, 2014, doi: 10.1007/s40565-014-0059-x.

Z. A. Kamaruzzaman and A. Mohamed, “Impact of grid-connected photovoltaic generator using PV curve and improved voltage stability index,”

in 2014 IEEE International Conference on Power and Energy (PECon), 2014, pp. 196–200. doi: 10.1109/PECON.2014.7062440.

W. Suampun, “Voltage Stability Analysis of Grid-connected Photovoltaic Power Systems Using CPFLOW,” Procedia Comput Sci, vol. 86, pp. 301–304, 2016, doi: https://doi.org/10.1016/j.procs.2016.05.082.

B. Tamimi, C. Cañizares, and K. Bhattacharya, “System Stability Impact of Large-Scale and Distributed Solar Photovoltaic Generation: The Case of Ontario, Canada,” IEEE Trans Sustain En 10.1109/TSTE.2012.2235151.

B. B. Adetokun, J. O. Ojo, and C. M. Muriithi, “Reactive Power-Voltage-Based Voltage Instability Sensitivity Indices for Power Grid With Increasing

Renewable Energy Penetration,” IEEE Access, vol. 8, pp. 85401–85410, 2020, doi: 10.1109/ACCESS. 2020.2992194.

B. Guddanti, J. R. Orrego, R. Roychowdhury, and M. S. Illindala, “Sensitivity Analysis Based Identification of Key Parameters in the Dynamic Model of a Utility-Scale Solar PV Plant,” IEEE Transactions on Power Systems, vol. 37, no. 2, pp. 1340–1350, Mar. 2022, doi: 10.1109/TPWRS.2021.3101466.

M. H. Ibrahim, S. P. Ang, M. N. Dani, R. Petra, and M. A. Salam, “Voltage stability assessment for solar photovoltaic penetration using Reactive Power–Voltage and Active Power–Voltage modal analysis,” Energy Reports, vol. 9, pp. 486–493, 2023, doi: https://doi.org/10.1016/j.egyr.2023.05.124.

D. R. Shrivastava et al., “A novel synchronized data-driven composite scheme to enhance photovoltaic (pv) integrated power system grid stability,”

Energy Reports, vol. 11, pp. 895–907, 2024, doi: https://doi.org/10.1016/j.egyr.2023.12.029.

Y. K𝚤rçiçek and A. Aktaş, “Design and implementation of a new adaptive energy management algorithm capable of active and reactive power control for grid-connected PV systems,” Ain Shams Engineering Journal, vol. 14, no. 12, p. 102220, Dec. 2023, doi: 10.1016/j.asej.2023.102220.

R. Singh, G. F. Alapatt, and A. Lakhtakia, “Making Solar Cells a Reality in Every Home: Opportunities and Challenges for Photovoltaic Device Design,” IEEE Journal of the Electron Devices Society, vol. 1, no. 6, pp. 129–144, Jun. 2013, doi: 10.1109/JEDS.2013.2280887.

C. J. Rhodes, “Solar Energy: Principles and Possibilities,” Sci Prog, vol. 93, no. 1, pp. 37–112, Mar. 2010, doi: 10.3184/003685010X12626410325807.

G.-S. Szabó, R. Szabó, and L. Szabó, “A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels,” Energies (Basel), vol. 15, no. 18, p. 6558, Sep. 2022, doi: 10.3390/en15186558.

“IEEE 14-bus and IEEE 118-bus systems,” https://labs.ece.uw.edu/pstca/.

S. K. Gupta and S. K. Mallik, “Enhancement in Voltage Stability Using FACTS Devices Under Contingency Conditions,” Journal of Operation and Automation in Power Engineering, vol. 12, no. 4, pp. 365–378, 2024, doi: 10.22098/joape.2023.11569.1864.

S. K. Gupta and S. K. Mallik, “Voltage Stability Assessment of Power System Using Line Indices with Wind System and Solar Photovoltaic Generation Integration,” Journal of Operation and Automation in Power Engineering, vol. 13, no. 4, pp. 303–314,2025, doi: 10.22098/joape.2024.13429.2028