Investigation on Metaradiator based on Metasurface

Main Article Content

Sarawuth Chaimool
Tanan Hongnara
Prayoot Akkaraekthalin

Abstract

Three unusual electromagnetics properties of metasurface namely negative permittivity (ENG), negative permeability (MNG), and near-zero refraction index (NZI) have been investigated. These properties are obtained by coupling effect of the combination between fractal fishnet structure and closed ring resonator on different sides of unit cell. To better understand the characteristics of metasurface, the metasurface as a superstrate/cover placed atop a conventional dipole at a small distance, which called metaradiator, has been studied and demonstrated. Moreover, in order to understand and explain clearly the unusual behaviors of metasurface, the robust retrieval method and the generalized sheet transition conditions have been applied to extract effective material properties. Numerical and simulated results show three different radiation patterns of metaradiator are strongly affected from metasurface within the entire band.

Article Details

Section
Research Articles

References

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, no. 3966, 2000.

D. Schurig, J. J. Mock, B. J. Justice, and S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977-980, Nov. 2006.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, pp. 207402-5, May 2008.

S. Chaimool, C. Rakluea, and P. Akkaraekthalin, “Mu-Near-Zero metasurface for microstrip-fed slot antennas,” Applied Physics A, vol. 112, pp. 669-675, 2013.

S. Chaimool, Kwok L. Chung, and P. Akkaraekthalin, “Simultaneous gain and bandwidth enhancement of a single-feed circularly polarized microstrip patch antenna using a matamaterial reflective surface,” Progress In Electromagnetics Research B, vol.22, pp.23-37, 2010.

S. Chaimool, T. Pechrkool, K. L. Chung, and P. Akkaraekthalin, “A compact zeroth-order resonant antenna based on modified Jerusalem cross mushroom structure” , in Proc. Inter. Workshop on Antenna Tech., pp. 377-379, 201

S. Chaimool and P. Akkaraekthalin, “Miniaturized wideband bandpass filter with wide stopband using metamaterial-based resonator and defected ground structure,” RadioEngineering, vol. 2, pp. 611-616, June 2012.

S. Chaimool, A. Pinsakul, and P. Akkaraekthalin, “Patch antenna miniaturization using artificial magneto-dielectric metasubstrate,” in Proc. Inter. Conf. of Intern Symp. on Antennas Propag., pp. 906-909, 2012.

N. Engheta and R.W. Ziolkowski, “Electromagnetic metamaterials: physics and engineering explorations,” John Wiley & Sons, Hoboken, NJ, 2006.

S. Chaimool, T. Hongnara, and P. Akkaraekthalin, “Low and zero refractive index metamaterials: characteristics and its applications,” in Proc. Inter. Electrical Engineering Congress, pp. 217-220, 2013.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag., vol. 54, no. 2, pp. 10–35, Apr. 2012,

S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength resonant cavities fed by microstrip patch array,” in Proc. IEEE Int. Workshop Antenna Technology, Mar. 2–4, 2009, pp. 1–4.

X. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterilas,” Phys. Rev. E, vol. 70, pp.0166081-0166087, 2004.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B, vol. 77, Apr. 2008.

Z. Szabo, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2224–2230, Oct. 2010.

D. Morits and C. Simovski, “Electromagnetic characterization of planar and bulk metamaterials: A theoretical study,” Phys. Rev. B, vol. 82, p. 165114, 2010.

C. L. Holloway, E. F. Kuester, and A. Dienstfey, “Characterizing metasurfaces/meta films: The connection between surface susceptibilities and effective material properties,” IEEE Antennas Wireless Propag. Lett., vol. 10, no. , pp. 1507–1511, 2011.

C. L. Holloway, D. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of generalized sheet transition conditions to model guided waves on metasurfaces/meta films,” IEEE Antennas Propag ., vol. 80, no. 11, pp. 5173–5186, Nov. 2012.

A. I. Dimitriadis, N. V. Kantartzis, I. T. Rekanos, and T. D. Tsiboukis, “Efficient Metafilm/Metasurface characterization for obliquely incident TE waves via surface susceptibility models,” IEEE Trans. Magn., vol. 48, no. 2, pp. 367–370, Feb. 2012

C. L. Holloway, D. C. Love, E. F. Kuester, A. Salandrino, and N. Engheta, “Sub-wavelength resonators: On the use of metafilms to overcome the λ/2 size limit,” IET Microw. Antennas Propag., vol. 2, pp. 120–129, 2008.