Introduction to Stresses in Load-Transferring Areas of Reinforced Concrete Beams Model Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Strips by an Active Method

Main Article Content

Sudchai Theankingkaew
Padipat Chaemmangkang

Abstract

This research studies the introduction of stresses in load-transferring areas of reinforced concrete beams strengthened with an active method, which induces compressive stresses in the concrete by tensioning a CFRP strip at its ends using a hydraulic jack until a predicted elongation of the CFRP strip is reached and ends of the strip are secured. In this study, a finite element method was used to analyze and predict the introduction of stresses and cracking of concrete in the load-transferring areas by using load-transfer devices with different height-to-diameter ratios for the concrete material of different compressive strengths.
The finite element program “ANSYS” was adopted to create models of reinforced concrete beams, the load-transfer devices and CFRP strip using three-dimensional solid elements, considering non-linear properties of the concrete material. Results of the analyses show that diameters, height-to-diameter ratios of the load-transfer devices, and compressive strengths of the concrete materials have influences on values of the tensile and compressive stresses of the concrete induced in the load-transferring areas, which may be predicted using simple equations having the height-to-diameter ratios and diameters of the load-transfer devices as well as compressive strengths of the concrete materials as independent variables, and values of the tensile or compressive stresses of the concrete in the load-transferring areas as dependent variables.

Article Details

Section
Research Articles

References

ธรรมชาติ กุลประภา, “การซ่อมเสริมกำลังโครงสร้างคอนกรีตด้วยวัสดุ Composite Materials ในประเทศไทย”, การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 7, หน้า 69-75, พ.ศ. 2544.

สุวิมล สัจจวาณิชย์, “การเสริมกำลังโครงสร้างด้วยระบบ Carbo Stress”,in “Strengthening of Structures with CarboStress System” , F. Fischli, R. Cle’nin, A. De Selva and P. Chaem-mangkang , Asia-Pacific Conference on FRP in Structures, International Institute for FRP Construction, 2007.

A. Dong-Suk Yang, B. Sun-Kyu Park and Kenneth W. Neale, “Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites”, Composite Structures, 2008. (accepted for publication).

Jose Alberto Anca Pereira, “FE Modeling of FRP Strengthening Systems on the White Bayou Bridge”, M.S.Thesis, Chalmers University of Technology, Goteborg, Sweden, 2005.

M.J. Tauris, “Stress Analysis of a Fiber Reinforced - Polymer Matrix Orthotropic Plate with an Elliptical Hole”, M.S.Thesis, Rensselaer Polytechnic Institute, Hartford Connecticut, 2009.

นเรศ พันธราธร,"การออกแบบคอนกรีตอัดแรง" ไลบราลี นาย, กรุงเทพฯ, หน้า 18, พ.ศ.2540.

ANSYS, “ANSYS User’s Manual Revision 5.5”, Swanson Analysis System, Inc., Houston PA, 1998.

ACI 318-99, American Concrete Institute, “Building Code Requirements for Reinforced Concrete”, American Concrete Institute, Farmington Hills, Michigan, 1999.

P. Desayi and S. Krishnan, “Equation for the Stress-Strain Curve of Concrete”, Journal of the American Concrete Inst., vol. 61, pp. 345-350, 1964.

M.Y.H Bangash, “Concrete and Concrete Structures: Numerical Modeling and Applications”, Elsevier Science Publishers, LTD., Essex, England, 1989.

Y. Hemmaty, “Modeling of the Shear Force Transferred Between Cracks in Reinforced and Fibre Reinforced Concrete Structures”, Proceedings of the ANSYS Conference, Vol. 1, Pittsburgh, Pennsylvania, 1998.

K.J. William and E.P. Warnke, “Constitutive Model for the Triaxial Behavior of Concret”, Proceedings International Association for Bridge and Structural Engineering, ISMES, Bergamo, Italy, Vol. 19, p. 174, 1975.

SikaCarboDur,"Heavy-Duty CFRP Strengthening System"

Available: http//www.sika.co.th/thsikathailand2.asp, April 15, 2010.