Incorporation of nanomodified materials in smart concrete


  • Gritsada Sua-iam Industrial Technology


Nano-modified smart concrete, Self-cleaning concrete, Self-healing concrete


This article presented a review on the nano-modified smart concrete. Incorporating particles that are nanoscale in size into concrete may result in radically improved properties compared to concrete that has only conventional grain-size materials of the same chemical composition. Thus, it may be possible to re-engineer many existing products and to design new products that function at unprecedented levels and even in unprecedented ways.


1. Sobolev, K., Gutiérrez, M.F., 2005, “How nanotechnology can change the concrete world”, American Ceram. Soc. Bull. 84(10), 14–18.
2. Rashad, A.M., 2014, “A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash”, Constr. Build. Mater. 52(2), 437–464.
3. Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M., Ahalawat, S., 2013, “Beneficial role of nanosilica in cement based materials: A review”, Constr. Build. Mater. 47(10), 1069–1077.
5. Sanchez, F., Sobolev, K., 2010, “Nano-technology in concrete: A review”, Constr. Build. Mater. 24(11), 2060–2071.
6. Han, B., Yu, X., Ou, J., 2014, Self-sensing concrete in smart structures, Butterworth-Heine-mann. Oxford, United Kingdom.
7. Konsta-Gdoutos, M.S., Aza, C.A., 2014, “Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious complex for real time damage assessment in smart structures”, Cem. Concr. Compos. 53(10), 162–169.
8. ManiBharath, S., Sathyanarayanan, K.S., Sridharan, N., 2015, “Self-sensing concrete using carbon fibre for health monitoring of structures under static loading”, International Conference on Engineering Trends and Science & Humanities (ICETSH-2015). Tamilnadu, India.
9. D’Alessandro, A., Rallini, M., Ubertini, F., Materazzi, A.L., Kenny, J.M., 2016, “Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix complex for SHM applications”, Cem. Concr. Compos. 65(1), 200–213.
10. Zhao, A., Yang, J., Yang, E-K., 2015, “Self-cleaning engineered cementitious complex”, Cem. Concr. Compos. 64(11), 74–83.
11. Hunger, H., Brouwers, H.J.H., 2009, Self-cleaning surfaces as an innovative potential for sustainable concrete, Excellence in Concrete Construction through Innovation (eds; Limbachiya and Kew). Taylor & Francis Group, London, UK.
12. Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L., Ye, J., 2015, “Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete”, J. Clean. Prod. 87(15), 762–765
13. Vallée, F., Ruot, B., Bonafous, L., Guillot, L., Pimpinelli, N., Casar, L., Strini, A., Mapelli, E., Schiavi, L., Gobin, C., André, H., Moussiopoulos, N., Papadopoulos, A., Bartzis, J., Maggos, T., McIntyre, R., Lehaut-Burnout, C., Henrichsen, A., Laugesen, P., Amadelli, R., Kotzias, D., Pichat, O., 2005, “Cementitious materials for self-cleaning and de-polluting façade surfaces. PRO 41: International RILEM Symposium on Environment-Conscious Materials and Systems for Sustainable Development (Edited; Kashino, N. and Ohama, Y.)”, RILEM Publications, France.
14. Birgisson, B., Mukhopadhyay, A.K., Geary, G., Khan, M., Sobolev, K., 2012, “Nanotechnology in concrete materials: A synopsis”, Transportation Research Circular E-C170, Transportation Research Board, Washington, United State of America.
14. Dehn, F., Bahnemann, D., Bilger, B., 2005, “Development of photocatalytically active coatings for concrete substrates”, PRO 41: International RILEM Symposium on Environment-Conscious Materials and Systems for Sustainable Development (Edited Kashino and Ohama). RILEM Publications, France.
15. Barbesta, M., Schaffer, D., 2009, “Concrete that cleans itself and the air: Photocatalytic cement helps oxidize pollutants”, Conc. Int., 31–33.
16. Awadalla, A., Zain, M.F.M., Kadhum, A.A.H., Abdalla, Z., 2011, “Titanium dioxide as photo-catalyses to create self-cleaning concrete and improve indoor air quality”, Int. J. Phys. Sci. 6(29), 6767–6774.
17. Kumar, J., Srivastava, A., Bansal, A., 2013, “Production of self-cleaning cement using modified titanium dioxide”, Int. J. Innov. Res. Sci. Eng. Technol. 2(7), 2688–2693.
18. Janus, M., Zatorskaa, J., Czy˙zewskia, A., Bubacza, K., Kusiak-Nejmana, E., Morawski, A.W., 2015, “Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts”, Appl. Surf. Sci. 330(3), 200–206.
19. Pattanaik, S.C., 2011, “Self-Sealing crystalline coating and self-cleaning nanocoating for the concrete substrate for a sustainable development”, In the Conference Proceedings of International Conference (ICTACE 2011). Hyderabad.
20. Ghosh, S.K., 2009, Self-healing materials: Fundamentals, design strategies, and applications. Wiley-Vch Verlag GmbH, Germany.
21. Bekas, D.G., Tsirka, K., Baltzis, D., Paipetis, A.S., 2016, “Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques”, Compos. Part B. 87(2), 92–119.
22. Amendola, V., Meneghetti, M., 2009, “Self-healing at the nanoscale”, Nanoscale. 1, 74–88.
23. Roig-Flores, M., Moscato, S., Serna, P., Ferrara, L., 2015, “Self-healing capability of concrete with crystalline admixtures in different environ-ments”, Constr. Build. Mater. 86(7), 1–11.
24. Koster, S.A.L., Mors, R.M., Nugteren, H.W., Jonkers, H.M., Meesters, G.M.H., van Ommen, J.R., 2015, “Geopolymer coating of bacteria-containing granules for use in self-healing concrete”, Procedia Eng. 102, 475–484.
25. Lv, L., Yang, Z., Chen, G., Zhu, G., Han, N., Schlangen, E., Xing, F., 2016, “Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cemen-titious materials”, Constr. Build. Mater. 105(2), 487–495.
26. Luo, M., Qian, C-X., Li, R-Y., 2015, “Factors affecting crack repairing capacity of bacteria-based self-healing concrete”, Constr. Build. Mater. 87(7), 1–7.
27. Khaliq, W., Ehsan, M.B., 2016, “Crack healing in concrete using various bio influenced self-healing techniques”, Constr. Build. Mater. 102(1), 349–357.