Trichoderma: Biology, ecology and Trichoderma-plant and Trichodermapathogen interactions

Main Article Content

Payungsak Ruayaree

Abstract

The fungal genus Trichoderma, belonging to the family Hypocreaceae, Euascomycetes, Ascomycota,


Eukaryota, consists of more than 200 species and ecologically resides in most soils in the roots of plants as


a rhizosphere-competent and in the part of plants as avirulent opportunistic symbionts, in the decaying woods and


organic matters as saprophytes. However, to study the biology, ecology, and plant-Trichoderma-pathogen


networking, it is essential to understand the colonization of host plant roots, plant growth promotion, root hair


development, yield or crop productivity, induced systemic resistance, and prime plant defense. The objective of this


review paper was to describe the Trichoderma functions which can attack, invade, and inhibit other types of fungi


or microbes as biocontrol agents through the mechanisms called antagonistic organisms, antibiosis, nutrient and


space competition, mycoparasitism, endophytic colonization, and inactivation of plant pathogen’s enzymes. This


review summarizes an overview of the biology, ecology, and knowledge background of Trichoderma-plant and


Trichoderma-pathogen interactions.

Article Details

How to Cite
Ruayaree, P. (2024). Trichoderma: Biology, ecology and Trichoderma-plant and Trichodermapathogen interactions . Journal of Science and Agricultural Technology, 4(2), 1–4. https://doi.org/10.14456/jsat.2023.7
Section
Review Articles

References

Abu-Taleb, A.M., El Deeb, K., and Al-otibi, F. 2011. Assessment of antifungal activity of Rumex vesica rius L. and Ziziphusspin–Christi (L.) Willd. extracts against two phytopathogenic fungi. Afr. J. Microbiol. Res. 5(9): 1001-1011.

Akrami, M., and Yousefi, Z. 2015. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonist fungi. BFAIJ. 7(1): 887-892.

Bae, S-J., Park., Y-H, Bae, H-J., Jeon, J., and Bae, H. 2017.

Molecular identification, enzyme assay, and metabolic profiling of Trichoderma spp. J. Microbiol. Biotechnol. 27(6): 1157-1162.

Baroncelli, R., Piaggeschi, G., Fiorini, L., Bertolini, E., Zapparata, A., Pè, M.E., Sarrocco, S., and Vannacci, G. 2015. Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc. 3(3): 1-2.

Benítez, T., Rincón, A.M., Limón, M.C., and Codón, A.C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7(4): 249-260.

Bhale, U.N., and Rajkonda, J.N. 2012. Evaluation of distribution of Trichoderma spp. in soils of Marathwada region of Maharashtra during 2007-2011. J. Mycol. Plant Pathol. 42: 505-508.

Cai, F., Dou, K., Wang, P., Chentamara, K., Chen, J., and Druzhinina, I.S. 2022. The current state of Trichoderma taxonomy and species identification. In: Amaresan, N., Sankaranarayanan, A., Dwivedi, M.K. and Druzhinina, I.S. (eds) Advances in Trichoderma biology for agricultural applications. Springer International Publishing. p.3-35.

Chaverri, P., and Samuels, G.J. 2013. Evolution of host affiliation and substrate preference in the cosmopolitan fungal genus Trichoderma with evidence of interkingdom host jumps. Evolution. 67: 2823-2837.

Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C., and Cardarelli, M. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride, acts as a biostimulant to promote growth, yield and nutrient uptake of vegetative crops. J. Sci. Food. Agric. 95: 1706-1715.

Contreras-Cornejo, H.A., Macías-Rodríguez, L., Del-Val, E., and Larsen, J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interaction with plants. FEMS Microbiol. Ecol. 92(4): fiw036. https://doi.org/10.1093/femsec/fiw036.

Crutcher, F.K., Parich, A., Schuhmacher, R, Mukherjee, P.K., Zeilinder, S., and Kenerley, C.M. 2013. A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal genet. biol. 56: 67-77.

Danielson, R.M., and Davey, C.B. 1973a. The abundance of Trichoderma propagules and the distribution of species in forest soils. Soil Biol. Biochem. 5: 485-494.

Danielson, R.M., and Davey, C.B. 1973b. Carbon and nitrogen nutrition of Trichoderma. Soil Biol. Biochem. 5: 505-515.

Danielson, R.M., and Davey, C.B. 1973c. Effects of nutrients and acidity on phialospore germination of Trichoderma in vitro. Soil Biol. Biochem. 5: 517-524.

Engelberth, J., Schmelz, E.A., Alborn, H.T., Cardoza, Y.J., Huang, J., and Tumlinson, J.H. 2003. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionizationmass spectrometry. Anal. Biochem. 312(2): 242-50.

Gressel, J.B., and Hartmann, K.M. 1968. Morphogenesis in Trichoderma: Action spectrum of photoinduced sporulation. Planta. 79: 271-274.

Guo, Y., Ghirardo, A., Weber, B., Schnitzler, J-P., Benz, J.P., and Rosenkranz, M. 2019. Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza Laccaria bicolor. Front Microbiol. 10(891): 1-15.

Harman, G.E. 2006. Overview of mechanisms and uses of Trichoderma species. Phytopathology. 96: 190-194. Heil, M., and Bostock, R.M. 2002. Induce systemic resistance (ISR) against pathogens in the context of induced

resistance. Ann. Bot. 89: 503-512. Hermosa, R., Rubio, M.B., Cardoza, R.E., Nicholás, C., Monte, E., and Gutiérres, S. 2013. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol. 16: 69-80.

Klein, D., and Eveleigh, D.E. 1998. Ecology of Trichoderma. In: Kubicek, C.P., and Harman, G.E. (eds.) Trichoderma & Gliocladium, Vol 1. Basic biology, taxonomy and genetics. Taylor & Francis, London p. 57-74.

Kuc, J. 2001. Concepts and direction of induced systemic resistance in plants and its application. Eur. J. Plant Pathol. 107: 7-12.

Lewis, J.A., and Papavizas, G.C. 1983. Chlamydospore formulation by Trichoderma spp. in natural substrate. Can. J. Microbiol. 30: 1-7.

Mahato, S., Bhuju , S., and Shrestha, J. 2018. Effect of trichoderma viride as biofertilizer on growth and yield of wheat. MJSA. 2(2) (2018) 01-05.

Ming, Q., Han, T.W., Zhang, Q., Zhang, H., Zheng, C., Huang, F., Rahman, K., and Qin, L. 2012. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine. 19: 330-333.

Monfil, V.O., and Casas-Flores, S. 2014. Molecular mechanisms of biocontrol in Trichoderma spp. and their application in agriculture. In: Gubta V.K., Schmoll M., Herrera-Estrella A., Upadhyay, R.S. Druzhinina I., and Tuohy M.G. (eds.) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam. p. 429-453.

Mukherjee, M., Mukherjee, P.K., Horwitz, B.A., Zachow, Z., Berg, G., and Zeilinger, S. 2012a. Trichoderma-plantpathogen interactions: Advances in genetics of biological control. Indian. J. Microbiol. 52(4): 522-529.

Mukherjee, P. K., Horwitz, B. A., and Kenerley, C. M. 2012b. Secondary metabolism in Trichoderma–a genomic perspective. Microbiology. 158(Pt 1): 35–45.

Munir, S., Jamal, Q., Bano, K., Sherwani, S.K., Abbas, M.N., Azam, S., Kan, A., Ali, S., Anees, M. 2014. Trichoderma and biocontrol genes: review. Sci Agric. 5: 40-45.

Oskiera, M., Szczech, M., and Bartoszewski, G. 2015. Molecular identification of Trichoderma strains collected to develop plant growth–promoting and biocontrol agents. J. Hortic. Res. 23(1): 75-86.

Parker, E.J. 2000. Signaling in plant disease resistance. In: Dickinson M. and Beynon J. (eds) Molecular plant pathology. Sheffield Academic Press, Sheffield. p. 198-217.

Pecoraro, L., Perini, C., Persiani, A.M., Saitta, A., Sarrocco, S., Vannacci, G., Venanzoni, R., Perotto, S., Angelini, P., Bianciotto, V., Bonfante, P., Girlanda, M., Kul, T., Mello, A., Quilliam, R.S., and Jones, D.L. 2012. Evidence for specificity of culturable fungal root endophytes from the carnivorous plant Pingulcula vulgaris (common butterwart). Mycol Prog. 11: 583-585.

Perotto, S., Angelini, P., Bianciotto, V., Bonfante, P., Girlanda, M., Kull, T., Mello, A., Pecoraro, L., Perini, C., Persiani, A.M., Saitta, A., Sarrocco, S., Vannacci, G., Venanzoni, R., Venturella, G., and Selosse, M.A. 2013. Interactions of fungi with other organisms. Plant Biosyst. 147:208-218.

Ranveer, K. K., Victor, A., Yogendra, S. G., and Vivek, K. 2018. Trichoderma: A most common biofertilizer with multiple roles in agriculture. Biomed J Sci &Tech Res. 4(5) -2018. BJSTR.MS.ID.001107.https://doi.org/10.26717/BJSTR.2018.04.001107.

Reino, J.L., Guerrero, R.F., Hernández-Galán, R., and Collado, I.G. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 7(1): 89-123.

Sallam, N.M.A., Eraky, A.M.I. and Sallam, A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Mol Biol Rep. 46: 4463–4470.

Samuels, G.J. 2006. Trichoderma systematics, the sexual state, and ecology. Phytopathology. 96(2): 195-206.

Sharma, S., Kour, D., Rana, K.L., Dhiman, A., Thakur, S., Thakur, P., Thakur, S., Thakur, N., Sudheer, S., Yadav, N., Yadav, A.N., Rastegari, A.A., and Singh, K. 2019. Trichoderma: Biodiversity, ecological significances, and industrial applications. In: Recent advancement in white biotechnology through fungi. Springer, Cham. p. 85-120.

Shoresh, M., Harman, G.E., and Mastouri, F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48: 21-43.

Stewart, A., and Hill, R. 2014. Applications of Trichoderma in plant growth promotion. In: Gupta V.K., Schmoll, M., Herra-Estrella A., Upadhyay R.S., Dru-zhinina I., and Tuohy M.G. (eds.) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam. p. 415-428.

Van Loon, L. C., and Van Strien., E.A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55(2): 85-97.

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L., and Lorito, M. 2008. Trichoderma-plantpathogen interactions. Soil Biol. Biochem. 40: 1-10.

Whipps, J.M., and Lumsden, R.D. 2001. Commercial use of fungi as plant disease biological control agents: status and propects. In: Butt, T.M., Jackson, C., and Magan, N. (eds) Fungal as biocontrol agents, problems and potential. CAB International, p 9-22.

Yedidia, I., Benhamou, N. and Chet, I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38: 863-873.