Study on a potentiality of plant aqueous extracts as natural dye fixatives in traditional dyeing processes using natural indigo from Strobilanthes cusia (Nees) Kuntze

Main Article Content

ดร.ปัทม์ ปรานอมรกิตติ์

Abstract

This research investigated the use of five local plants in Northern Thailand which were Camellia sinensis (CS), Moringa oleifera (MO), Oroxylum indicum (OI), Schefflera leucantha (SL), and Tinospora cordifolia (TC) as stabilizing agents for indigo dyed fabric. The selected plants were extracted and examined for phytochemical compositions. It was found that CS-extract revealed the highest content of total phenolic compound, flavonoid and tannin of 2.40±0.46 GAE/mg DW, 3.31±0.29 QE/mg DW, and 0.23±0.01 ECGC/mg DW, respectively. MO total phenolic compound, flavonoid and tannin of 0.96±0.04 GAE/mg DW, 1.81±0.15 QE/mg DW, and 0.15±0.02 ECGC/mg DW, respectively. For antioxidant properties, CS and MO exhibited the most efficiency of 6564.4±55.6 mM Fe2+/g DW and 6512.6±220.6 mM Fe2+/g DW, respectively. Consequently, these might be responsible for the ability for color fixation. Particularly, MO with the excellent properties resulted in a good color fastness score at 3-4. In contrast, CS seemed to be less fixative ability than MO.

Article Details

How to Cite
ปรานอมรกิตติ์ ด. (2025). Study on a potentiality of plant aqueous extracts as natural dye fixatives in traditional dyeing processes using natural indigo from Strobilanthes cusia (Nees) Kuntze. Journal of Science and Agricultural Technology, 6(1), 1–10. https://doi.org/10.14456/jsat.2025.1
Section
Research Article

References

Aboulwafa, M. M., Youssef, S. F., Gad, A. H., Altyar, E. A., Al-Azizi, M. M., & Ashour, L. M. 2019. A comprehensive insight on the health benefits and phytoconstituents of Camellia sinensis and recent approaches for its quality control. Antioxidants, 8, 455: 1-33. Doi:10.3390/antiox8100455

Akanda, R., Hasan, M., Ema, U. H., & Aminul Haque, M. 2021. Optimization of Spondias mombin peel extract mediated synthesis of palladium nanoparticles as nanozyme exhibits potent multienzyme activity. Journal of the Iranian Chemical Society, 18(12): 3407-3415. https://doi.org/10.1007/s13738-021-02278-w

Aouf, D., Khane,Y., Fenniche, F., Albukhaty, S., Sulaiman, M. G., Khane, S., Henni, A., Zoukel, A., Dizge, N., Mohammed, H., & Abomughaid, M. 2024. Biogenic silver nanoparticles of Moringa olifera leaf extract: characterization and photocatalytic application. Nanotechnology Reviews, 13: 1-17.

Baldisserotto, A., Barbari, R., Tupini, C., Buzzi, R., Durini, E., Lampronti, I., Manfredini, S., Baldini, E., & Vertuani, S. 2023. Multifunctional Profiling of Moringa oleifera Leaf Extracts for Topical Application: A Comparative Study of Different Collection Time. Antioxidants (Basel, Switzerland), 12(2): 411. https://doi.org/10.3390/antiox 12020411

Benli, H. 2024. Bio-mordants: a review. Environ Sci Pollut Res, 31: 20714–20771 https://doi.org/10.1007/s11356-024-32174-8

Cosme, F., Aires, A., Pinto, T., Oliveira, I., Vilela, A., & Gonçalves, B. 2025. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules (Basel, Switzerland), 30(4): 800. https://doi.org/10.3390/molecules30040800

Dănilă, E., & Lucache, D. D. 2016. Efficient lighting system for greenhouses. International conference and exposition on electrical and power engineering (EPE2016). https://www.researchgate.net/publication/309582430

El-Hagrassi, M. A., Osman, F. A., El-Naggar, E. M., Nowaad, A. N., Khalil, M., & Hamed, A. M. 2022. Phytochemical Constituents and Protective Efficacy of Shefflera arboricola L. Leaves Extract Against Thioacetamide-Induced Hepatic Encephalopathy in Rats. Biomarkers, 27(4): 375-394. https://doi.org/10.1080/1354750X.2022.2048892

Khiya, Z., Oualcadi, Y., Gamar, A., Berrekhis, F., Zair, T. &Hilali, E.L. 2021. Correlation of Total Polyphenolic Content with Antioxidant Activity of Hydromethanolic Extract and Their Fractions of the Salvia officinalis Leaves from Different Regions of Morocco. Journal of Chemistry, 2021, Article ID 8585313. doi: 10.1155/2021/8585313.

Kusmita, L., Puspitaningrum, I., & Limantara, L. 2015. Identification, isolation and antioxidant activity of pheophytin from green tea (Camellia sinensis (L.) Kuntze. Procedia Chemistry, 14: 232-238.

Lambrecht, L., Capablanca, L., Bou-Belda, E., Montava, I., Díaz-García, P., & Gisbert-Payá, J. 2023. Enhancing Polyphenols and Tannins Concentration on Cotton Dyed with Red Tea. Sustainability, 15(4): 3062. https://doi.org/10.3390/su15043062

Li, S., Cunningham, A.B., Fan, R., & Wang, Y. 2019. Identity blues: the ethnobotany of the indigo dyeing by Landian Yao (Iu Mien) in Yunnan, Southwest China. J Ethnobiology Ethnomedicine, 15: 13 doi: 10.1186/s13002-019-0289-0

Muniyandi, K., George, E., Sathyanarayanan, S., George, B. P., Abrahamse, H., Thamburaj, S., & Thangaraj, P. 2019. Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Science and Human Wellness, 8(1): 73-81.

Murokore, B. J., California, P. V., Wacoo, A. P., Wangalwa, R., Ajayi, C. O., Gumisiriza, H., & Masawi, A. N. 2023. Effect of extraction period on total phenolics, total flavonoids, and antioxidant capacity of Ugandan Camellia sinensis (L) kuntze, black primary grades and green tea. Journal of Food Quality, 2023(1): 3504280.

Obulesu, M. & Bhattacharya, S. 2011. Color Changes of Tamarind (Tamarindus indica L.) Pulp During Fruit Development, Ripening, and Storage. International Journal of Food Properties, 14: 538-549. doi: 10.1080/10942910903262129

Oladunjoye, A.O., Eziama, S.C., & Aderibigbe, O.R. 2021. Proximate composition, physical, sensory and microbial properties of wheat-hog plum bagasse composite cookies. Lwt - Food Science and Technology, 141: 111038. https://doi.org/10.1016/j.lwt.2021.111038

Panomai, P., Thapphasaraphong, S., & Nualkaew, N. 2024. A comparative study of two Oroxylum indicum (L.) Kurz. Phenotypes based on phytochemicals and antioxidant effects, and the anti-flammatory activity of leaf and pod extracts. Plants, 13: 1-15.

Pattanaik, L., Nail, S.N., Hariprasad, P., & Padhi, S.K. 2021. Influence of various oxidation parameter(s) for natural indigo dye formation from Indigoferatinctoria L. biomass. Environmental Challenges, 4: 100157. https://doi.org/10.1016/j.envc.2021.100157

Pranamornkith, P., Tharawatchruk, W., Panthuwat, W., Chaiwongsar, S., Yodthong, W., & Sassa-deepaeng, T. 2022. Utilization of Carissa carandas Linn. aqueous extracts as reducing agent for traditional cotton fabrics dyeing with indigo from Strobilanthes cusia Nees. J. Sci. Agri. Technol., 3(2): 12 – 18.

Puri, A., & Patil, S. 2022. Tinospora cordifolia stem extract-mediated green synthesis of selenium nanoparticles and its biological applications. Pharmacogn Res, 14(3): 289-296

Rojsanga, P., Schwaiger, S., Stuppner, H., & Sithisarn, P. 2023. Determination of Phytochemical Contents in Extracts from Different Growth Stages of Oroxylum indicum Fruits Using HPLC-DAD and QAMS Methods. Molecules (Basel, Switzerland), 28(19): 6837. https://doi.org/10.3390/molecules28196837

Sassa-deepaeng, T., Yodthong, W., & Khamphira, T. 2019. Synthesized copper nanoparticles and their anti-bacterial properties against bullfrog multidrug resistant gram negative bacteria. Veterinary Integrative Sciences, 17(1): 33-49. https://he02.tci-thaijo.org/index.php/vis/article/view/136649

Sassa-Deepaeng, T., Yodthong, W., Khumpirapang, N., Anuchapreeda, S., & Okonogi, S. 2023. Effects of plant-based copper nanoparticles on the elimination of ciprofloxacin. Drug Discoveries & Therapeutics, 17(5): 320-327. https://doi.org/10.5582/ddt.2023.01057

Sarker, M. K. U., Haque, M. M., Hasan, M. R., Sultana, S., Ray, S. K., & Shaikh, M. A. A. 2024. Utilization of factory tea (Camellia sinensis) wastes in eco-friendly dyeing of jute packaging fabrics. Heliyon, 10(10): e30948. https://doi.org/10.1016/j.heliyon. 2024.e30948

Sharma, P., Dwivedee, B. P., Bisht, D., Dash, A. K., & Kumar, D. 2019. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon, 5(9): e02437. https://doi.org/10.1016/j.heliyon.2019.e02437

Stohs, S. J., & Hartman, M. J. 2015. Review of the Safety and Efficacy of Moringa oleifera. Phytotherapy research: PTR, 29(6): 796–804. https://doi.org/10.1002/ ptr.5325

Tiburski, H. J., Rosenthal, A., Deliza, R., Godoy, L. O. R., & Pacheo, O. 2011. Nutritional properties of yellow mombin (Spondias mombin L.) pulp. Food Research International, 44(7): 2326-2331.

Tiwari, P., Kumar, B., Kumar, M., Kaur, M., Debnath, J., & Sharma, P. 2011. Comparative anthelmintic activity of aqueous and ethanolic stem extract of Tinospora cordifolia. Int. J. Drug Dev. & Res, 3(1): 70-83.

Toscano, S., Ferrante, A., Branca, F., & Romano, D. 2021. Enhancing the quality of two species of baby leaves sprayed with Moringa leaf extract as biostimulant. Agronomy, 11: 1-18. https://doi.org/10.3390/agronomy11071399

Wang, Y., Khan, F. A., Siddiqui, M., Aamer, M., Lu, C., Atta-Ur-Rahman, Atia-Tul-Wahab, & Choudhary, M. I. 2021. The genus Schefflera: A review of traditional uses, phytochemistry and pharmacology. Journal of ethnopharmacology, 279: 113675. https://doi.org/10.1016/j.jep.2020.113675

Xu, H., Yang, C., & Song, H. Y. 2025. Eco-Friendly Dyeing and Functional Finishing of Organic Cotton Using Optimized Oolong Tea Stems (Agricultural Waste) Through Response Surface Methodology. Molecules (Basel, Switzerland), 30(3): 509. https://doi.org/10.3390/molecules30030509