Pulsed electric field–assisted green extraction of cocoa pod husk: enhancement of antioxidant and tyrosinase inhibitory activities
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Agudelo, C., Bravo, K., Ramírez-Atehortúa, A., Torres, D., Carrillo-Hormaza, L., & Osorio, E. 2021. Chemical and Skincare Property Characterization of the Main Cocoa Byproducts: Extraction Optimization by RSM Approach for Development of Sustainable Ingredients. Molecules, 26(24), 7429. https://doi.org/10.3390/molecules 26247429
Akl, E.M., Taha, F.S., Mohamed, S.S. 2022. Effective treatments of jojoba and jatropha hulls to obtain phytochemical compounds for industrial, nutritional, and pharmaceutical uses. Bull Natl Res Cent 43, 21. https://doi.org/10.1186/ s42269-019-0054-5
Anatachodwanit, A., Chanpirom, S., Tree-Udom, T., Kitthaweesinpoon, S., Jiamphun, S., Aryuwat, O., Tantapakul, C., Vinardell, M. P., & Sripisut, T. 2025. Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging. Life, 15(7), 1126. https://doi. org/10.3390/life15071126
Athanasiadis, V., Pappas, V. M., Palaiogiannis, D., Chatzimitakos, T., Bozinou, E., Makris, D. P., & Lalas, S. I. 2022. Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiseri Using Hydroethanolic Mixtures. Oxygen, 2(2), 91-98. https://doi.org/10.3390/oxygen 2020008
Barbosa-Pereira, L., Guglielmetti, A. & Zeppa, G. 2018. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess Technol. 11, 818–835.
Belwal, T., Cravotto, C., Ramola, S., Thakur, M., Chemat, F., & Cravotto, G. 2022. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain. Foods, 11(6), 798. https://doi.org/10. 3390/foods11060798
El Mannoubi, I. 2023. Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. J.Umm Al-Qura Univ. Appll. Sci. 9, 176–184. https://doi.org/10.1007/s43994-023-00031-y
Gomez, P., Reyes, C., & Figueroa, J. G. 2025. Microwave-Assisted Extraction of Phenolic Compounds from Cocoa Pod Husk: Process Optimization and Impact of Drying Temperature on Bioactive Recovery. Molecules (Basel, Switzerland), 30(17), 3497. https://doi.org/10.3390/ molecules30173497
Jitrangsri, K., Chaidedgumjorn, A., & Satiraphan, M. 2020. Effect of ethanol percentage upon various extraction methods of peanut based on antioxidant activity with trans-resveratrol and total phenolic contents. 47(2), 164–172. https://doi.org/10.29090/PSA.2020.02.018.0056
Karim, A. A., Azlan, A., Ismail, A., Hashim, P., Abd Gani, S. S., Zainudin, B. H., & Abdullah, N. A. 2014. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC complementary and alternative medicine, 14, 381. https://doi.org/10.1186/1472-6882-14-381
Koopmann, A. K., Schuster, C., Torres-Rodríguez, J., Kain, S., Pertl-Obermeyer, H., Petutschnigg, A., & Hüsing, N. 2020. Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules (Basel, Switzerland), 25(21), 4910. https://doi.org/10.3390/molecules 25214910
Mungwari, C.P., King’ondu, C.K., Sigauke, P., & Obadele, B.A. 2024. Conventional and Modern Techniques for Bioactive Compounds Recovery from Plants: Review. Scientific African. 27, e02509. https://doi.org/10.1016/ j.sciaf.2024.e02509
Pappas, V. M., Palaiogiannis, D., Athanasiadis, V., Chatzimitakos, T., Bozinou, E., Makris, D. P., & Lalas, S. I. 2022. Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures. Oxygen, 2(4), 537-546. https://doi.org/10.3390/ oxygen2040035
Pranamornkith, P., Tharawatchruk, W., Panthuwat, W., Chaiwongsar, S., Yodthong, W, & Sassa-deepaeng, T. 2022. Utilization of Carissa carandas Linn. aqueous extracts as reducing agent for traditional cotton fabrics dyeing with indigo from Strobilanthes cusia Nees. Journal of Science and Agricultural Technology, 3(2), 12–18. https://doi. org/10.14456/jsat.2022.7
Priani, S.E., Aprilia, S., Aryani, R., & Purwanti, L. 2019. Antioxidant and tyrosinase inhibitory activity of face serum containing cocoa pod husk phytosome (Theobroma cacao L.). Journal of Applied Pharmaceutical Science. 9(10), 110-115. https://doi. org/10.7324/JAPS.2019. 91015
Salee, N., Chaiyana, W., Yawootti, A., Naruenartwongsakul, S., Klangpetch, W., Walter, P., & Utama‐ang, N. 2022. Optimization of the pulse electric field assisted extraction of black rice grain for antioxidant and sirtuin1 enzyme stimulation activities. Sci Rep 12, 645. https://doi.org/10.1038/ s41598-022-10272-2
Sassa-Deepaeng, T., Yodthong, W., Khumpirapang, N., Anuchapreeda, S., & Okonogi, S. 2023. Effects of plant-based copper nanoparticles on the elimination of ciprofloxacin. Drug Discoveries & Therapeutics, 17(5), 320-327. https://doi.org/10.5582/ddt.2023. 01057
Sassa-deepaeng, tanongsak, Yodthong, W., & khamphira, T. 2019. Green synthesized copper nanoparticles and their anti-bacterial properties against bullfrog multidrug resistant gram negative bacteria. Veterinary Integrative Sciences, 17(1), 33–49. retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/136649
Teanprapakun, N., Thammalungka, N., Moolphueng, A., Wongwilai, J., Mokrid, P., Pitakrajpong, S., & Sassa-deepaeng, T. 2025. Saliva amylase inhibitory property of certain herbs and spices in Lampang, Thailand. Journal of Science and Agricultural Technology, 6(1), 11–21. https://doi.org/10. 14456/jsat.2025.2
Vu, V. N. H., Cao, T. Q., Nguyen, T. T. H., Nguyen, L. T. N., Le, P. H., & Nguyen, V. 2025. Extraction of Bioactive Compounds from Cocoa Pod Husk (Theobroma cacao L.) Using Deep Eutectic Solvent Assisted with Ultrasound. Natural Product Communications, 20(4), 1934578X251333026.
Wang, Z., Yang, S., Gao, Y., & Huang, J. 2022. Extraction and purification of antioxidative flavonoids from Chionanthus retusa leaf. Frontiers in bioengineering and biotechnology, 10, 1085562. https://doi.org/10.3389/ fbioe.2022.1085562
Yodthong, W., Chaiwongsar, S., Wanachantararak, P., Keereeta, Y., Panthuwat, W., Saovapha, B., & Sassa-deepaeng, T. 2020. Influence of different extraction solvents on antioxidant and antityrosinase activities of Morus alba Linn. leave extract. Journal of Science and Agricultural Technology, 1(1), 7-17. https://doi.org/10.14456/ jsat.2020 .2.
Zhao, S., Liu, J. Y., Chen, S. Y., Shi, L. L., Liu, Y. J., & Ma, C. 2011. Antioxidant potential of polyphenols and tannins from burs of Castanea mollissima Blume. Molecules (Basel, Switzerland), 16(10), 8590–8600. https://doi.org/10.3390/molecules16108590