Fixed Point of Total Asymptotically Nonexpansive Mappings in Banach Spaces
Main Article Content
Abstract
In this paper, we present a strong convergence theorem for total asymptotically nonexpansive mappings in a real uniformly convex Banach space.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Khomphurngson K., Kamyan N., Nammanee K. New modified hybrid algorithm for pseudo-contractive mappings in Hilbert spaces. J. Nonlinear Funct. Anal. 2022; (2022): 25.
Berinde, V., Pcurar, M. Approximating fixed points of enriched contractions in Banach spaces. Fixed Point Theory Appl.2020; 22(2): 1–10. https://doi: 10.1007/s11784-020-0769-9
Deshmukh, A., Gopal, D., Rakocevi, V. Two new iterative schemes to approximate the fixed points for mappings. International Journal of Nonlinear Sciences and Numerical Simulation. 2023; 24(4): 1265-1309. https://doi.org/10.1515/ijnsns-2021-0141
Salisu S., Kumam P., Sriwongsa S., Gopal D. Enriched asymptotically nonexpansive mappings with center zero. Filomat. 2024; 38:1: 343–356.
Goebel K., Kirk WA. A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1972; 35: 171-174.
Alber YI., Chidume CE., Zegeye H. Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2006; Article ID 10673.
Onsod W., Kumam P., Saleewong T. Fixed Point of Suzuki-Geraghty Type -Contractions in Partial Metric Spaces with Some Applications. Science & Technology Asia. 2023; 28(1).
Pansuwan A., Sintunavarat W. The new hybrid iterative algorithm for numerical Reckoning fixed point of Suzuki’s generalized nonexpansive mappings with numerical experiments, Thai journal of Mathematics 2021; 19:167-168.
Kaewkhao A., Bussaban L., Suantai S. Convergence Theorem of Inertial Piteration Method for a Family of Nonexpansive Mappings with Applications, Thai J. Math. 2020; 18 (4): 1743-1751.
Khan SH., Fukhar-ud-din H. Approximating fixed points of -nonexpansive mappings by RK-iterative process in modular function spaces, J. Nonlinear Var. Anal. 2019; (3): 107-114.
Budzyska M., Grzesik A., Kaczor W., Kuczumow T. A remark on the fixed point property of nonexpansive mappings, J. Nonlinear Var. Anal. 2018; (2): 35-47.
Marino G., Zaccone R. On strong convergence of some midpoint type methods for nonexpansive mappings, J. Nonlinear Var. Anal. 2017; (1): 159-174.
Chidume CE., Ofoedu EU., Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings. J. Math. Anal. Appl. 2007; 333 (1): 128-141.
Chidume CE., Ofoedu EU. A new iteration process for approximation of common fixed points for finite families of total asymptotically nonexpansive mappings. Int. J. Math. Math. Sci. 2009; Article ID 615107.
Kim GE. Approximating common fixed points for total asymptotically nonexpansive mappings. J. Appl. Math. Inform. 2012; 30: 71 82.
Kim GE. Strong convergence to a fixed point of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2013; 2013:302.
Kim GE., Kim TH. Strong convergence theorems of total asymptotically nonexpansive mappings. In: Proceedings of the 7th International Conference on Nonlinear Analysis and Convex Analysis, 2011; pp. 197-208.
Nammanee K. Fixed point iterations for nonexpansive and asymptotically nonexpansive mappings in a Banach space. [Ph.D. thesis]. Phitsanulok: Naresuan University; 2007.
Ishikawa S. Fixed points by a new iteration method, Proc. Amer. Math. Soc. 1974; 44 (1): 147–150.
Mann WR. Mean value methods in iteration, Proc. Amer. Math. Soc. 1953; (4): 506–510.
Rhoades BE. Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 1994; 183: 118-120.
Schu J. Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 1991; 158: 407-413.
Kim GE. Weak and strong convergence of the modified Mann iteration process for nonexpansive mappings. J. Nonlinear Convex Anal. 2012; 13(3): 449-457.
Senter HF., Dotson WG. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974; 44: 375-380.
Qihou L. Iterative sequences for asymptotically quasi-nonexpansive mappingswith error member. J. Math. Anal. Appl. 2001; 259: 18-24.
Groetsch CW. A note on segmenting Mann iterates. J. Math. Anal. Appl.1972; 40: 369-372.