Fixed Point of Total Asymptotically Nonexpansive Mappings in Banach Spaces

Main Article Content

Kannika Khomphurngson
Kamonrat Nammanee

Abstract

In this paper, we present a strong convergence theorem for total asymptotically nonexpansive mappings in a real uniformly convex Banach space.

Article Details

How to Cite
Kannika Khomphurngson, & Nammanee, K. (2024). Fixed Point of Total Asymptotically Nonexpansive Mappings in Banach Spaces. Science & Technology Asia, 29(2), 183–190. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/249420
Section
Physical sciences

References

Khomphurngson K., Kamyan N., Nammanee K. New modified hybrid algorithm for pseudo-contractive mappings in Hilbert spaces. J. Nonlinear Funct. Anal. 2022; (2022): 25.

Berinde, V., Pcurar, M. Approximating fixed points of enriched contractions in Banach spaces. Fixed Point Theory Appl.2020; 22(2): 1–10. https://doi: 10.1007/s11784-020-0769-9

Deshmukh, A., Gopal, D., Rakocevi, V. Two new iterative schemes to approximate the fixed points for mappings. International Journal of Nonlinear Sciences and Numerical Simulation. 2023; 24(4): 1265-1309. https://doi.org/10.1515/ijnsns-2021-0141

Salisu S., Kumam P., Sriwongsa S., Gopal D. Enriched asymptotically nonexpansive mappings with center zero. Filomat. 2024; 38:1: 343–356.

Goebel K., Kirk WA. A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1972; 35: 171-174.

Alber YI., Chidume CE., Zegeye H. Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2006; Article ID 10673.

Onsod W., Kumam P., Saleewong T. Fixed Point of Suzuki-Geraghty Type -Contractions in Partial Metric Spaces with Some Applications. Science & Technology Asia. 2023; 28(1).

Pansuwan A., Sintunavarat W. The new hybrid iterative algorithm for numerical Reckoning fixed point of Suzuki’s generalized nonexpansive mappings with numerical experiments, Thai journal of Mathematics 2021; 19:167-168.

Kaewkhao A., Bussaban L., Suantai S. Convergence Theorem of Inertial Piteration Method for a Family of Nonexpansive Mappings with Applications, Thai J. Math. 2020; 18 (4): 1743-1751.

Khan SH., Fukhar-ud-din H. Approximating fixed points of -nonexpansive mappings by RK-iterative process in modular function spaces, J. Nonlinear Var. Anal. 2019; (3): 107-114.

Budzyska M., Grzesik A., Kaczor W., Kuczumow T. A remark on the fixed point property of nonexpansive mappings, J. Nonlinear Var. Anal. 2018; (2): 35-47.

Marino G., Zaccone R. On strong convergence of some midpoint type methods for nonexpansive mappings, J. Nonlinear Var. Anal. 2017; (1): 159-174.

Chidume CE., Ofoedu EU., Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings. J. Math. Anal. Appl. 2007; 333 (1): 128-141.

Chidume CE., Ofoedu EU. A new iteration process for approximation of common fixed points for finite families of total asymptotically nonexpansive mappings. Int. J. Math. Math. Sci. 2009; Article ID 615107.

Kim GE. Approximating common fixed points for total asymptotically nonexpansive mappings. J. Appl. Math. Inform. 2012; 30: 71 82.

Kim GE. Strong convergence to a fixed point of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2013; 2013:302.

Kim GE., Kim TH. Strong convergence theorems of total asymptotically nonexpansive mappings. In: Proceedings of the 7th International Conference on Nonlinear Analysis and Convex Analysis, 2011; pp. 197-208.

Nammanee K. Fixed point iterations for nonexpansive and asymptotically nonexpansive mappings in a Banach space. [Ph.D. thesis]. Phitsanulok: Naresuan University; 2007.

Ishikawa S. Fixed points by a new iteration method, Proc. Amer. Math. Soc. 1974; 44 (1): 147–150.

Mann WR. Mean value methods in iteration, Proc. Amer. Math. Soc. 1953; (4): 506–510.

Rhoades BE. Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 1994; 183: 118-120.

Schu J. Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 1991; 158: 407-413.

Kim GE. Weak and strong convergence of the modified Mann iteration process for nonexpansive mappings. J. Nonlinear Convex Anal. 2012; 13(3): 449-457.

Senter HF., Dotson WG. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974; 44: 375-380.

Qihou L. Iterative sequences for asymptotically quasi-nonexpansive mappingswith error member. J. Math. Anal. Appl. 2001; 259: 18-24.

Groetsch CW. A note on segmenting Mann iterates. J. Math. Anal. Appl.1972; 40: 369-372.