Coincidence Point Theorems on Odered 𝑏-Metric Spaces via 𝑤𝑡-Distance with Application to Matrix Equations and Numerical Experiments
Main Article Content
Abstract
This article aims to create a new type of generalized contraction mapping to modify the concept of an 𝑒𝐾 -simulation function which is defined by Yamaod and Sintunavarat [2019, J. Nonlinear Convex Anal.], we investigate the existence and uniqueness of a point of coincidence in the mapping with respect to a 𝑤𝑡- distance in a partially ordered 𝑏-metric space which extends the results of Roldán López de Hierro et al. [2015, J. Comput. Appl. Math.]. Furthermore, we prove the existence of Hermitian positive definite solutions of nonlinear matrix equations with some examples and numerical experiments.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Berinde V. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory. 1993;3-9.
Mongkolkeha C., Cho Y.J. Kumam P. Fixed point theorems for simulation functions in b-metric spaces via the wt-distance. Applied General Topology. 2017;18(1):91-105.
Mongkolkeha C. Gopal D. Some Common Fixed Point Theorems for Generalized F-Contraction Involving w-Distance with Some Applications to Differential Equations. Mathematics. 2019;7(1):32.
Czerwik S. Contraction mappings in 𝑏-metric space. Acta Math. Inform. Univ. Ostrav. 1993;1:5-11.
Czerwik S. Nonlinear set-valued contraction mappings in 𝑏-metric spaces. Atti Semin. Mat. Fis. Univ. Modena. 1998;46:263-76.
Darko K., Lakzian H., Rakocevic V. Ciric’s and Fisher’s quasi-contractions in the framework of wt-distance. Rendiconti del Circolo Matematico di Palermo Series 2. 2023;72:377-91.
Ghosh S.K., Nahak C. An extension of Lakzian-Rhoades results in the structure of ordered b-metric spaces via wt-distance with an application. Applied Mathematics and Computation. 2020;378:125197.
Hussain N., Saadati R., Agrawal R.P. On the topology and wt-distance onmetric type spaces. Fixed Point Theory and Applications. 2014;88.
Heinonen J. Lectures on Analysis on Metric Spaces. Springer Berlin. 2001.
Hossein L., Rhoades B.E. Some fixed point theorems using weaker MeirKeeler function in metric spaces with w-distance. Applied Mathematics and Computation. 2019;342:18-25.
Liu Z., Lu Y., Kang S.M. Fixed point theorems for multi-valued contractions with w-distance. Applied Mathematics and Computation. 2013;224:535-52.
Kada O., Suzuki T., Takahashi W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japonica. 1996;44:381-91.
Khojasteh F., Shukla S., Radenovic S. A New Approach to the Study of Fixed Point Theory for Simulation Functions. Filomat. 2015;29:6:1189-94.
Ran A.C.M., Reurings M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 2003;132:1435-43.
Roldán-López-de-Hierro A., Karapinar E., Roldán-López-de-Hierro d C., Martínez-Moreno J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl.Math. 2015;275:345-55.
Roldán López de Hierro A. F., Samet B. 𝜑-admissibility results via extended simulation functions. J. Fixed Point Theory Appl. 2017;19:1997-2015.
Demma M., Saadati R., Vetro P. Multivalued operators with respect wt-distance on metric type spaces. Bull Iranian Math Soc. 2016;42(6):1571-82.
Suzuki T. Generalized Distance and Existence Theorems in Complete Metric Spaces. 2001;253(2):440-58.
Takahashi W. Nonlinear Functional Analysis ”Fixed Point Theory and its Applications”. Yoka-hama Publishers, Yokahama, Japan. 2000.
Yamaod O., Sintunavarat W. An approach to the existence and uniqueness of fixed point results in 𝑏-metric spaces via 𝑠- simulation functions.J. Fixed Point Theory Appl. 2017;19:2819-30.
Yamaod O., Sintunavarat W. On new homotopy results via a generalized extended simulation function in b-metric spaces. J. Nonlinear Convex Anal. 2019;20(10):2225-38.