Generalized Penon Involutive Weak Globular Higher Categories

Main Article Content

Paratat Bejrakarbum
Paolo Bertozzini

Abstract

This research examines a generalization of the concept of an involutive weak globular 𝜔-category through Penon’s approach. We first introduce the notion of a globular cone, then equip it with compositions, identities, and self-duality. Next, a free reflexive self-dual globular-cone 𝜔-magma and a free strict involutive globular-cone 𝜔-category along with a specified contraction over a given globular cone are established. An algebra for the monad induced by the free-forgetful adjunction arising from the previously constructed structure naturally defines an involutive weak globular-cone 𝜔-category. We finally provide crucial examples of involutive weak globular-cone 𝜔-categories.

Article Details

How to Cite
Bejrakarbum, P., & Bertozzini, P. (2024). Generalized Penon Involutive Weak Globular Higher Categories. Science & Technology Asia, 29(3), 10–24. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/250738
Section
Physical sciences

References

S. Eilenberg, S. Mac Lane. General theory of natural equivalences: Trans. Am. Math. Soc. 58, 1945. p. 231-94.

J. Baez, M. Stay. Physics, topology, logic and computation: a rosetta stone: New Structures for Physics 95-172, Lecture Notes in Physics 813 Springer, 2011. arXiv:0903.0340 [quant-ph].

C. Ehresmann. Catégories Structurée: Ann. Sci. É. Norm. Supér. (3) 8, 1963. p.369-426.

C. Ehresmann. Catégories et Structures:Dunod, 1965.

M. Burgin. Categories with involution and correspondences in 𝛾-categories: Trans. Moscow Math. Soc. 22, 1970. p.181-257.

D. Yau. Involutive category theory: Lecture Notes in Mathematics 2279 Springer, 2020.

P. Bertozzini. Categorical operator algebraic foundations of relational quantum theory: Proceedings of Science PoS(FFP14) 206, 2014. arXiv:1412.7256 [math-ph]

P. Bertozzini, R. Conti, W. Lewkeeratiyutkul, N. Suthichitranont. On strict quantum higher C*-categories: Cahiers de Topologie et Geómet́rie Diffeŕentielle Cateǵoriques LXI(3) 2020. p. 239-348.

J. Bénabou. Introduction to bicategories: Reports of the Midwest Category Seminar, Springer, 1967. p. 1-77.

A. Grothendieck. Pursuing stacks: 1983. available pdf file.

M. Batanin. Monoidal globular categories as a natural environment for the theory of weak 𝑛-categories: Adv. Math. 136(1) 1998. p. 39-103.

J. Penon. Approche polygraphique des ∞-categories non strictes: Cah. Topol. Géom. Différ. Catég. 40(1), 1999. p. 31-80.

T. Leinster. Higher operads, higher categories: Cambridge University Press, 2004. arXiv:math/0305049 [math.CT].

C. Kachour. Algebraic definition of weak (∞, 𝑛)-categories: Theory Appl. Categ. 30(22), 2015. p. 775-807. arXiv:1208.0660 [math.KT].

P. Bejrakarbum, P. Bertozzini. Involutive weak globular higher categories. Proceedings of the 22nd Annual Meeting in Mathematics (AMM 2017), Chiang Mai University. 2017. ALG-06-01 - ALG-06-14. arXiv:1709.09336 [math.CT].

E. Cheng, A. Lauda. Higher-dimensional categories: an illustrated guide book: IMA Workshop, 2004.

E. Riehl. Category theory in context: 2016. Dover Publications.

P. Bejrakarbum. Involutive Weak Globular Higher Categories. Master’s Thesis. Thammasat University, Thailand. 2017.