Discovery of COVID-19 Protein Inhibitors in Phenolic Acids of Azadirachta indica (Neem) using Docking and Pharmacokinetics

Main Article Content

Miah Roney
AKM Moyeenul Huq
Mohd Fadhlizil Fasihi Mohd Aluwi

Abstract

COVID-19, a viral infection caused by the coronavirus SARS-CoV-2, is one of the world's most challenging diseases to cure. The fact that COVID-19 does not currently have any pharmaceutical treatments means that a concentrated effort must be made to discover the muchneeded remedies for this illness. The most attractive antiviral targets of SARS-CoV-2 are the spike protein and main protease (Mpro). In this work, sixteen phenolic acids of Azadirachta indica were docked into the active site of the spike protein and Mpro. The resulting compounds were then subjected to pharmacokinetic studies to establish the lead compounds. Based on the results, ferulic acid was found to be a promising candidate for further research into its potential as a SARS-CoV-2 inhibitor due to its positive anticipated pharmacokinetics and pharmacological properties.

Article Details

How to Cite
Miah Roney, AKM Moyeenul Huq, & Mohd Fadhlizil Fasihi Mohd Aluwi. (2024). Discovery of COVID-19 Protein Inhibitors in Phenolic Acids of Azadirachta indica (Neem) using Docking and Pharmacokinetics. Science & Technology Asia, 29(3), 290–303. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/253142
Section
Biological sciences

References

Li J, He X, Yuan Y, Zhang W, Li X, Zhang Y, Dong G. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) pneumonia. Am J infect Control 2021;49(1):82-9.

Amparo TR, Seibert JB, Silveira BM, Costa FSF, Almeida TC, Braga SFP, de Souza GHB. Brazilian essential oils as source for the discovery of new anti-COVID-19 drug: a review guided by in silico study. Phytochem Rev 2021;20(5):1013-32.

https://www.worldometers.info/coronavirus/.

Ali A, Sepay N, Afzal M, Sepay N, Alarifi A, Shahid M, Ahmad M. Molecular designing, crystal structure determination and in silico screening of copper (II) complexes bearing 8-hydroxyquinoline derivatives as anti-COVID-19. Bioorg Chem 2021;110:104772.

Gasmi A, Peana M, Noor S, Lysiuk R, Menzel A, Gasmi Benahmed A, Bjørklund G. Chloroquine and hydroxychloroquine in the treatment of COVID-19: the neverending story. Appl microbiol biotechnol 2021;105:1333-43.

Gyselinck I, Janssens W, Verhamme P, Vos R. Rationale for azithromycin in COVID-19: an overview of existing evidence. BMJ Open Resp Res 2021;8(1):e000806.

Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Heppner FL. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat neurosci 2021;24(2):168-75.

Xu J, Gao L, Liang H, Chen SD. In silico screening of potential anti–COVID-19 bioactive natural constituents from food sources by molecular docking. Nutri 2021;82:111049.

Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J Biomol Struct Dyn 2021;39(8):2980-92.

Dwivedi VD, Bharadwaj S, Afroz S, Khan N, Ansari MA, Yadava U, Kang SG. Antidengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J Biomol Struct Dyn 2021;39(4):1417-30.

Paul R, Prasad M, Sah NK. Anticancer biology of Azadirachta indica L (neem): a mini review. Cancer biol ther 2021;12(6):467-76.

Vijayakumar S, Divya M, Vaseeharan B, Ranjan S, Kalaiselvi V, Dasgupta N, Durán- Lara EF. Biogenic preparation and characterization of ZnO nanoparticles from natural polysaccharide Azadirachta indica. L.(neem gum) and its clinical implications. J Cluster Sci 2021;32:983-93.

Baildya N, Khan AA, Ghosh NN, Dutta T, Chattopadhyay AP. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J mol struct 2021;1227:129390.

Nilima T, Pranali S, Madhura T. Medicinal plant as a source of Antipyretic drug: A Review. Asian J Pharm Technol 2021;11(1):84-7.

Banerjee K, Chatterjee M, Sandur R, Nachimuthu R, Madhyastha H, Thiagarajan P. Azadirachta indica A. Juss (Neem) oil topical formulation with liquid crystals ensconcing depot water for antiinflammatory, wound healing and antimethicillin resistant Staphylococcus aureus activities. J Drug Del Sci Technol 2021;64:102563.

Nesa M, Hosen ME, Khan MAI, Kabir MH, Zaman R. In-vitro antifungal activity of Azadirachta indica, Ocimum tenuiflorum & Murraya paniculata leaf extract against three phytopathogenic fungi. Am. J Pure Appl Sci 2021;3(5):113-8.

Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146: 105023.

Singh P, Tiwari M. Review on Azadirachta Indica. Int. J. Pharma. Life Sci 2021;2(1 Part A):28-33.

Akinloye OA, Akinloye DI, Lawal MA, Shittu MT, Metibemu DS. Terpenoids from Azadirachta indica are potent inhibitors of Akt: validation of the anticancer potentials in hepatocellular carcinoma in male Wistar rats. J Food Biochem 2021;45(1):e13559.

Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J ethnopharmacol 2002;79(2):273-8.

Sood R, Bhatia S, Bhatnagar H, Gupta V, Kumar M, Dimri U, Swarup D. Phytochemical analysis and in vitro screening of selected Indian medicinal plants for antiviral activity against highly pathogenic avian influenza virus. Spatula DD 2013;3(3):81-8.

Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr sci 2002;1336-45.

Sangeetha K, Rajarajan S. In-vitro antiviral activity of Indian medicinal plants to Asian and East Central South African lineage of Chikungunya virus. Int J Pharm Sci Res 2015;6(2):692.

Asif M. Antimicrobial potential of Azadirachta indica against pathogenic bacteria and fungi. J Pharm phytochem 2012;1(4):78-83.

Badam L, Joshi SP, Bedekar SS. 'In vitro'antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J comm dis 1999;31(2):79-90.

Righi N, Boumerfeg S, Deghima A, Fernandes PA, Coelho E, Baali F, Baghiani A. Phenolic profile, safety assessment, and anti inflammatory activity of Salvia verbenaca L. J Ethnopharmacol 2021;272:113940.

Nea F, Bitchi MB, Genva M, Ledoux A, Tchinda AT, Damblon C, Fauconnier ML. Phytochemical investigation and biological

activities of Lantana rhodesiensis. Mol 2021;26(4):846.

van de Sand L, Bormann M, Schmitz Y, Heilingloh CS, Witzke O, Krawczyk A. Antiviral active compounds derived from natural sources against herpes simplex viruses. Viruses 2021;13(7):1386.

de Oliveira Raphaelli C, Azevedo JG, dos Santos Pereira E, Vinholes JR, Camargo TM, Hoffmann JF, Nora L. Phenolic-rich apple extracts have photoprotective and anti-cancer effect in dermal cells. Phytomed. Plus 2021;1(4):100112.

Iketani S, Mohri H, Culbertson B, Hong SJ, Duan Y, Luck MI, Ho DD. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nat 2023;613(7944)558-64.

Padhi AK, Seal A, Khan JM, Ahamed M, Tripathi T. Unraveling the mechanism of arbidol binding and inhibition of SARSCoV-2: Insights from atomistic simulations. Eur J pharmacol 2021;894:173836.

Roney M, Singh G, Huq AM, Forid MS, Ishak WMBW, Rullah K, Tajuddin SN. Identification of Pyrazole Derivatives of Usnic Acid as Novel Inhibitor of SARSCoV-2 Main Protease Through Virtual Screening Approaches. Mol biotechnol 2023;1-11.

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181(4)894-904.

Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Sci 2020;368(6497):1331-5.

Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin 2020;41(1):138-44.

Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J med Chem 2015;58(9):4066-72.

Bhagat RT, Butle SR, Khobragade DS, Wankhede SB, Prasad CC, Mahure DS, Armarkar AV. Molecular docking in drug discovery. J Pharm Res Int 2021;46-58.

Xuan TD, Tsuzuki E, Hiroyuki T, Mitsuhiro M, Khanh TD, Chung IM. Evaluation on phytotoxicity of neem (Azadirachta indica. A. Juss) to crops and weeds. Crop protec 2004;23(4):335-45.

Cristo JS, Matias EF, Figueredo FG, Santos JF, Pereira NL, Junior JG, Coutinho HD. HPLC profile and antibiotic-modifying activity of Azadirachta indica A. Juss,(Meliaceae). Ind crops prod 2016;94:903-8.

Patil SS, Deshannavar UB, Ramasamy M, Hegde PG. Modeling and optimisation studies on the ultrasound-assisted extraction of phenolic compounds from Azadirachta indica. Chem Eng Commun 2022;209(10):1423-38.

Lakshmi T, Krishnan V, Rajendran R, Madhusudhanan N. Azadirachta indica: A herbal panacea in dentistry–An update. Pharm rev 2015;9(17):41.

Stojanović BT, Mitić SS, Stojanović GS, Mitić MN, Kostić DA, Paunović DƉ, Pavlović AN. Phenolic profiles and metal ions analyses of pulp and peel of fruits and seeds of quince (Cydonia oblonga Mill.). Food Chem 2017;232:466-75.

Narnoliya LK, Sangwan N, Jadaun JS, Bansal S, Sangwan RS. Defining the role of a caffeic acid 3-O-methyltransferase from Azadirachta indica fruits in the biosynthesis of ferulic acid through heterologous overexpression in Ocimum species and Withania somnifera. Planta 2021;253:1-13.

Srivastava S, Srivastava AK. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica. Appl biochem biotechnol 2014;172:2286-97.

Dorababu D, Joshi MC, Kumar BGMM, Chaturvedi A, Goel RK. Effect of aqueous extract of neem (Azadirachta indica) leaves on offensive and defensive gastric mucosal factors in rats. Ind j physiol pharmacol 2006;50(3):241.

Mukherjee A, Sengupta S. Characterization of nimbidiol as a potent intestinal disaccharidase and glucoamylase inhibitor present in Azadirachta indica (neem) useful for the treatment of diabetes. J enzyme inhibit med chem 2013;28(5):900-10.

Hossain R, Sarkar C, Hassan SMH, Khan RA, Arman M, Ray P, Calina D. In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chinese j integrat med 2022;28(3):249-56.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Eng j med 2020;382(13):1199-207.

Rendon-Marin S, Martinez-Gutierrez M, Whittaker GR, Jaimes JA, Ruiz-Saenz J. SARS CoV-2 spike protein in silico interaction with ACE2 receptors from wild and domestic species. Front Gene 2021;12:571707.

Jiang X, Su H, Shang W, Zhou F, Zhang Y, Zhao W, Xu Y. Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Nat Communicat 2023; 14(1): 6463.

Lee JT, Yang Q, Gribenko A, Perrin Jr BS, Zhu Y, Cardin R, Hao L. Genetic surveillance of SARS-CoV-2 Mpro reveals high sequence and structural conservation prior to the introduction of protease inhibitor Paxlovid. Mbio 2022;13(4):e00869-22.

Ridgway H, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Hoffmann W, Matsoukas JM. Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: computational and enzymatic studies. Expert Opin Ther Target 2024;28(5):437-59.

Roney M, Huq AM, Rullah K, Hamid HA, Imran S, Islam MA, Mohd Aluwi MFF. Virtual screening-based identification of potent DENV-3 RdRp protease inhibitors via in-house usnic acid derivative database. J Comput Biophys Chem 2021;20(08)797-814.

Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY. Nanoparticulate drug delivery strategies to address intestinal cytochrome P450 CYP3A4 metabolism towards personalized medicine. Pharm 2021; 13(8): 1261.

Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K+ channel as safety and pharmacological target. Pharmacol potassium chan 2021;139-66.

David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A perspective on synthetic biology in drug discovery and development—current impact and future opportunities. SLAS DISCOVERY: Adv Sci Drug Dis 2021;26(5):581-603.

Nishinarizki V, Hardianto A, Gaffar S, Muchtaridi M, Herlina T. Virtual screening campaigns and ADMET evaluation to unlock the potency of flavonoids from Erythrina as 3CLpro SARS-COV-2 inhibitors. J Appl Pharm Sci 2023;13(2):078-88.

Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb drug resist 2013;19(4): 256-65.

Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin pharmacol. Physiol 2018; 31(6):332-6.

Gao J, Yu H, Guo W, Kong Y, Gu L, Li Q, Wang Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int 2018;18:1-9.

Yang ML, Song YM. Synthesis and investigation of water-soluble anticoagulant warfarin/ferulic acid grafted rare earth oxide nanoparticle materials. Rsc Adv 2015;5(23):17824-33.

Yin ZN, Wu WJ, Sun CZ, Liu HF, Chen WB, Zhan QP, Hui WU. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomed. Environ. Sci 2019;32(1):11-21.

Wang Z, Xie D, Gan X, Zeng S, Zhang A, Yin L, Hu D. Synthesis, antiviral activity, and molecular docking study of trans-ferulic acid derivatives containing acylhydrazone moiety. Bioorg med chem lett 2017;27(17):4096-100.

Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect Gene Evo 2020;84:104451.

Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The inhibitory potential of ferulic acid derivatives against the SARSCoV- 2 main protease: molecular docking, molecular dynamics, and ADMET evaluation. Biomed 2022;10(8):1787.

Pasquereau S, Galais M, Bellefroid M, Pachón Angona I, Morot-Bizot S, Ismaili L, Herbein G. Ferulic acid derivatives block coronaviruses HCoV-229E and SARSCoV-2 replication in vitro. Sci rep 2022;12(1):20309.