Alternative Method for the Estimation of Parameters for the Normal Inverse Gaussian Distribution

Main Article Content

Hussaya Nookaew
Nawapon Nakharutai
Pimwarat Srikummoon
Manad Khamkong

Abstract

This article presents a study on the parameter estimation of the Normal Inverse Gaussian distribution, which is a specialized instance of the generalized hyperbolic distribution that is extensively utilized in the analysis of financial time series. Conventionally, the maximum likelihood method and the method of moment are used to estimate the parameters; however, these methods have a restriction on the feasible domain of possible skewness and excess kurtosis values. Therefore, we propose an alternative parameter estimation method for the Normal Inverse Gaussian distribution based on the Metropolis Hasting exponential maximum likelihood method. Moreover, the performance of this method will be compared with the maximum likelihood estimator, the epsilon maximum likelihood estimator, the exponential maximum likelihood estimator, and the Metropolis Hasting maximum likelihood estimator using both simulated and real-world datasets. For simulation, we use the smallest root mean square error and provide descriptive statistics, including means and standard deviations to evaluate the performance of the model. For real data application, the selection of the model is guided by a goodness-of-fit test using the Anderson-Darling test statistics criterion. Furthermore, the model selection should demonstrate the smallest AD value alongside the highest p-value.

Article Details

How to Cite
Hussaya Nookaew, Nawapon Nakharutai, Pimwarat Srikummoon, & Manad Khamkong. (2024). Alternative Method for the Estimation of Parameters for the Normal Inverse Gaussian Distribution. Science & Technology Asia, 29(2), 85–101. Retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/254651
Section
Articles

References

Barndorff-Nielsen OE. Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1977;353:401-19.

Barndorff-Nielsen OE. Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling. Scandinavian Journal of Statistics 1997; 24:1-13.

Trejo B, Nuñez JA, Lorenzo A. Distribución de los rendimientos del mercado mexicano accionario. Estudios Económicos 2006; 21:85-118.

Shen H, Meng X, Guo R, Zhao Y, Ding S, Meng X. Heavy-Tailed Distribution and Risk Management of Gold Returns. International Journal of Academic Research in Economics and Management Sciences 2017;6:15-24.

Núñez JA, Contreras-Valdez MI,Ramírez-García A, Sánchez-Ruenesn E. Underlying Assets Distribution in Derivatives: The BRIC Case. Theoretical Economics Letters 2018;8:502-13.

Karlis D. An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution. Statistics & Probability Letters 2002;57:43-52.

Figueroa -López JE, Lancette SR, Lee K, Mi Y. Estimation of NIG and VG Models for High Frequency Financial Data. SSRN Electronic Journal 2011;1-23.

Ghysels E, Wang F. Moment-Implied Densities: Properties and Applications. Journal of Business & Economic Statistics 2014; 32:88-111.

Yoon J, Song S. A numerical study of adjusted parameter estimation in normal in verse Gaussian distribution. Korean Journal of Applied Statistics 2016;29:741-52.

Yoon J, Kim J, Song S. Comparison of parameter estimation methods for normal inverse Gaussian distribution. Communications for Statistical Applications and Methods 2020;27:97-108.

Kim J. A Study on the Estimation of Spliced Distributions using ExponentialEstimation Method [master’s thesis]. Seoul: Korea University; 2019.

Dhull MS, Kumar A. Normal inverse Gaussian autoregressive model using EM algorithm. International Journal of Advances in Engineering Sciences and Applied Mathematics 2021;13:139-47.

Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 10th ed. Dover; 1972.

Eriksson A, Ghysels E, Wang F. The normal inverse Gaussian distribution and the pricing of derivatives. The Journal of Derivatives 2009;16:23-37.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953;21:1087-92.

Ghitany ME, Song P, & Wang S. New modified moment estimators the two parameter weighted Lindley distribution. Journal of Statistical Computation and Simulation 2017;87:3225-40.