Modeling the Spatial Durbin Error Model on Open Unemployment Rate Data in Indonesia 2023

Main Article Content

Arbain
Memi Nor Hayati
Siti Mamuda

Abstract

This study applies the Spatial Durbin Error Model (SDEM) to analyze the factors in fluencing the Open Unemployment Rate (OUR) across 34 provinces in Indonesia in 2023. The model incorporates both direct effects and spatial spillover effects of the independent variables. The Maximum Likelihood Estimation (MLE) method was used for parameter estimation. The spatial weight matrix was constructed using a customized contiguity approach. The results show that the Labor Force Participation Rate (LFPR) and Gender Development Index (GDI) have significant direct effects on OUR, while Population Growth Rate (PGR) and GDI also exhibit significant spatial lag effects. The spatial autoregressive coefficient λ is 0.371, indicating significant spatial dependence in the error term. The model’s AIC value 104.750 is lower than the MLR model, confirming better model fit.

Article Details

How to Cite
Arbain, Nor Hayati, M. ., & Mamuda, S. (2025). Modeling the Spatial Durbin Error Model on Open Unemployment Rate Data in Indonesia 2023. Science & Technology Asia, 30(3), 189–198. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/258009
Section
Engineering

References

LeSage JP. The theory and practice of spatial econometrics. New York: Department of Economics, University of Toledo; 1999.

Badan Pusat Statistik. Statistik Indonesia: Statistical yearbook of Indonesia 2023. Jakarta: Badan Pusat Statistik; 2023.

Sukirno S. Makro ekonomi. Jakarta: Raja Grafindo Persada; 2008.

Andriyani D, Rivanka D. Pengaruh in deks pembangunan manusia, rasio perbandingan gender dan inflasi terhadap tingkat pengangguran terbuka di Kota Medan. Jurnal Ekonomi Publik Malikussaleh. 2023;6(1):50.

Nisa II, Karim A, Wasono R. Pemodelan Spatial Durbin Error Model (SDEM) pada data indeks pembangunan manusia (IPM) di Jawa Tengah. Jurnal Statistika. 2017;5(1):33-40.

Akbar A, Kartiko. Spatial Durbin Error Model pada pemodelan persentase penduduk miskin (PPM) di Provinsi Sulawesi Selatan. Jurnal Statistika Industri dan Komputasi. 2018;3(2):74-83.

Teku HP, Noeryanti, Bekti RD. Spatial Durbin Error Model pada pemodelan tingkat pengangguran terbuka di Provinsi Nusa Tenggara Timur. Jurnal Statistika Industri dan Komputasi. 2023;8(2):1-15.

Irianto A. Statistik: Konsep dasar dan aplikasinya. Jakarta: Kencana; 2009.

Widarjono A. Ekonometrika: Teori dan aplikasi untuk ekonomi dan bisnis. Yo gyakarta: Ekonisia; 2007.

Manurung J, Adler H, Ferdinand D. Ekonometrika. Jakarta: Elex Media Computindo; 2005.

Cressie N. Statistics for spatial data. Rev ed. New York: John Wiley Sons, Inc.; 1993.

Lee J, Wong DWS. Statistical analysis with ArcView GIS. New York: John Wiley Sons, Inc.; 2001.

Hayati MN, Purnamasari I, Wahyuningsih S. Analysis of spatial autocorrelation of diarrhea events in East Kalimantan in 2015-2017 using a local indicator of spatial autocorrelation. J Phys Conf Ser. 2019;1277(1):012045.

Afifah DL, Rahardjo S, Kholifia N. Optimization of tax revenue in East Java: an empirical analysis of Spatial Durbin Error Model. J Phys Conf Ser. 2021;1872(1):012025.

Kholifia N, Rahardjo S, Muksar M, Atikah N, Afifah DL. Spatial analysis of factors influencing Gross Regional Domestic Product (GRDP) in East Java: a Spatial Durbin Error Model analysis. J Phys Conf Ser. 2021;4(04):20-44.