Interval Estimation in Truncated Spline Regression: Analyzing the 2023 Indonesian Democracy Index
Main Article Content
Abstract
The truncated spline is a piecewise polynomial that maintains continuity across segments and offers a high degree of flexibility in estimating data that varies significantly across different intervals. This study applies the truncated spline method with interval estimation to analyze the 2023 Indonesian Democracy Index (IDI) data. The objective is to identify the key factors that significantly influence IDI and to evaluate the estimated results of the nonparametric spline regression curve for the 2023 IDI data. The analysis findings indicate that the predictor variables used in this study have a substantial impact on IDI, with a determined coefficient of approximately 97.81%. Based on the interval estimation analysis of the regression curve, it was found that out of 34 provinces in Indonesia, 8 provinces were estimated accurately. These provinces include Kepulauan Riau, DKI Jakarta, Bali, Central Kalimantan, North Sulawesi, Central Sulawesi, North Maluku, and Papua. Additionally, the analysis indicates that 16 provinces have experienced a decline in their Democracy Index (IDI) criteria, suggesting a possible transition in their democratic performance. This situation calls for further in-depth studies to improve their democratic achievement levels. On the other hand, 18 provinces are projected to experience an increase in their IDI performance.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Dani ATR, Ratnasari V, Budiantara IN. Optimal Knots Point and Bandwidth Selection in Modeling Mixed Estimator Nonparametric Regression. IOP Conf Ser Mater Sci Eng. 2021;1115(1):012020.
Nurcahyani H, Budiantara IN, Zain I. Nonparametric Truncated Spline Regression on Modelling. AIP Conf Proc. 2023;020073(May).
Sriliana I, Budiantara IN, Ratnasari V. A Truncated Spline and Local Linear Mixed Estimator in Nonparametric Regression for Longitudinal Data and Its Application. Symmetry. 2022;14(12).
Dani ATR, Putra FB, Ni’matuzzaroh L, Ratnasari V, Budiantara IN. BTS Buku Tentang Statistika Regresi parametrik dan non Parametrik Teori dan Aplikasi dengan Software R. Jawa Barat: Perkumpulan Rumah Cemerlang Indonesia; 2024.
Chu CK, Marron JS. Choosing a Kernel Regression Estimator. Statistical Science. 1991;6(4):404–436.
Mariati NPAM, Budiantara IN, Ratnasari V. Combination Estimation of Smoothing Spline and Fourier Series in Nonparametric Regression. J Math. 2020;2020.
Cattaneo MD, Jansson M, Ma X. Simple Local Polynomial Density Estimators. J Am Stat Assoc. 2020;115(531):1449–55.
Bilodeau M. Fourier smoother and additive models. Can J Stat. 1992;20(3):257–69.
Amato U, Antoniadis A, De Feis I, Gijbels I. Wavelet-based robust estimation and variable selection in nonparametric additive models. Stat Comput. 2022;32(1).
Ampulembang AP, Otok BW, Rumiati AT, Budiasih. Bi-responses nonparametric regression model using MARS and its properties. Appl Math Sci. 2015;9(29–32):1417–27.
Tripena A, Prabowo A, Lianawati Y, Bon AT. Estimated spline in nonparametric regression with a generalized cross validation and unbiased risk approach. Proc Int Conf Ind Eng Oper Manag. 2021:3788–98.
Chamidah N, Zaman B, Muniroh L, Lestari B. Designing local standard growth charts of children in East Java province using a local linear estimator. Int J Innov Creat Change. 2020;13(1):45–67.
Eslami MM. Spline and Wavelet Smoothing Techniques for Functional Data. 2023:36–41.
Adrianingsih NY, Budiantara IN, Purnomo JDT. Modeling with Mixed Kernel, Spline Truncated and Fourier Series on Human Development Index in East Java. IOP Conf Ser Mater Sci Eng. 2021;1115(1):012024.
Widyastuti DA, Fernandes AAR, Pramoedyo H. Spline estimation method in nonparametric regression using truncated spline approach. J Phys Conf Ser. 2021;1872(1):012027.
Devi AR, Pratama RFW, Suparti. Comparison of generalized cross validation and unbiased risk method for selecting optimal knot in spline truncated. J Phys Conf Ser. 2019;1217(1):012094.
Maharani M, Saputro DRS. Generalized Cross Validation (GCV) in Smoothing Spline Nonparametric Regression Models. IOP Conf Ser Earth Environ Sci. 2021;1808(1):012053.
Saputro DRS, Demu KR, Widyaningsih P. Nonparametric truncated spline regression model on the data of human development index (HDI) in Indonesia. J Phys Conf Ser. 2018;1028(1):012219.
Chamidah N, Lestari B, Massaid A, Saifudin T. Estimating mean arterial pressure affected by stress scores using spline nonparametric regression model approach. Commun Math Biol Neurosci. 2020;2020:1–12.
Sriliana I, Budiantara IN, Ratnasari V. The performance of mixed truncated spline-local linear nonparametric regression model for longitudinal data. MethodsX. 2024;12(March).
Budiantara IN, Ratna M, Zain I, Wibowo W. Modeling the Percentage of Poor People in Indonesia Using Spline Nonparametric Regression Approach. Int J Basic Appl Sci IJBAS-IJENS. 2012;12(6):119–24.
Setiawan RNS, Budiantara IN, Ratnasari V. Application of Confidence Intervals for Parameters of Nonparametric Spline Truncated Regression on Index Development Gender in East Java. IPTEK J Sci. 2017;2(3):49–55.
Nidhomuddin, Chamidah N, Kurniawan A. Confidence Interval of the Parameter on Multipredictor Biresponse Longitudinal Data Analysis Using Local Linear Estimator for Modeling of Case Increase and Case Fatality Rates Covid-19 in Indonesia: a Theoretical Discussion. Commun Math Biol Neurosci. 2022;2022:1–12.
Lestari B, Chamidah N, Budiantara IN, Aydin D. Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator. J King Saud Univ Sci. 2023;35(5):1–7.
Budiantara IN, Ratnasari V, Permatasari EO, Prawanti DD. Shortest confidence interval of parameter semi parametric regression model using spline truncated for longitudinal data. AIP Conf Proc. 2019;2194.
Mao W, Zhao LH. Free-knot polynomial splines with confidence intervals. J R Stat Soc B Stat Methodol. 2003;65(4):901–19.
Suprapto. Interval Estimation for Indonesia Democracy Index (IDI) Model Using Multivariables Spline Truncated. Int J Sci Eng Res. 2018;9(9):1740–50.
Setyawati M, Chamidah N, Kurniawan A. Confidence Interval of Parameters in Multiresponse Multipredictor Semiparametric Regression Model for Longitudinal Data Based on Truncated Spline Estimator. Commun Math Biol Neurosci. 2022;2022:1–18.
Lestari B, Chamidah N, Budiantara IN, Aydin D. Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator. J King Saud Univ Sci. 2023;35(5):102664.
Eubank RL. Nonparametric Regression and Spline Smoothing. New York: CRC Press; 1999.
Hardle W. Applied Nonparametric Regression. 1994.
Wahba G. Spline Models for Observational Data. Pennsylvania: SIAM; 1990.
Ratnasari V, Budiantara IN, Andrea TRD. Nonparametric Regression Mixed Estimators of Truncated Spline and Gaussian Kernel based on Cross-Validation (CV), Generalized Cross-Validation (GCV), and Unbiased Risk (UBR) Methods. Int J Adv Sci Eng Inf Technol. 2021;11(6):2400–6.
Nidhomuddin, Chamidah N, Kurniawan A. Confidence Interval Of The Parameter On Multipredictor Biresponse Longitudinal Data Analysis Using Local Linear Estimator For Modeling Of Case Increase And Case Fatality Rates Covid-19 In Indonesia: A Theoretical Discussion. Commun Math Biol Neurosci. 2022;2022(23):1–12.
Wang L, Politis DN. Asymptotic validity of bootstrap confidence intervals in nonparametric regression without an additive model. Electron J Stat. 2021;15(1):392–426.