Association Mapping of Early Mortality Syndrome - Acute Hepatopancreatic Necrosis Disease Tolerance in Litopenaeus vannamei
Main Article Content
บทคัดย่อ
Early Mortality Syndrome (EMS)-Acute Hepatopancreatic Necrosis Disease (AHPND) is a severe bacterial disease that significantly impacts Pacific white shrimp (Litope naeus vannamei) farming, leading to substantial declines in shrimp production. To mitigate losses caused by EMS-AHPND, molecular breeding presents a promising approach for sustainable disease prevention. This study focused on the identification of single nucleotide polymorphism (SNP) markers associated with EMS-AHPND phenotypes using Genotyping by-sequencing (GBS). SNP markers were identified in fourth-generation selective breeding lines of L. vannamei. A total of 9,504 filtered SNPs were analyzed for their association with EMS-AHPND phenotypes using the Fixed and Random Model Circulating Probability Unification (FarmCPU), accounting for population stratification and cryptic relatedness. Seven SNPs were identified as significantly associated with EMS-AHPND phenotypes, with P-values passing the Bonferroni-adjusted threshold. This study provides a valuable genetic tool for the genetic improvement of EMS-AHPND tolerance in L. vannamei.
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
Lyu D, Yu Y, Zhang Q, Luo Z, Wang Q, Xiang J, et al. Estimating genetic parameters for resistance to Vibrio parahaemolyticus with molecular markers in Pacific white shrimp. Aquaculture.
;527:735439.
Kumar V, Roy S, Behera BK, Bossier P, Das BK. Acute Hepatopancreatic Necrosis Disease (AHPND): Virulence, Pathogenesis and Mitigation Strategies in Shrimp Aquaculture. Toxins. 2021;13(8):524.
Vandeputte M, Kashem MA, Bossier P, Vanrompay D. Vibrio pathogens and their toxins in aquaculture: A comprehensive review. Rev Aquac. n/a(n/a).
Han JE, Tang KF, Tran LH, Lightner DV. Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease
(AHPND) of shrimp. Dis Aquat Organ. 2015;113(1):33-40.
Lee C-T, Chen I-T, Yang Y-T, Ko TP, Huang Y-T, Huang J-Y, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a
deadly toxin. Proc Natl Acad Sci USA. 2015;112(34):10798-803.
Yang YT, Chen IT, Lee CT, Chen CY, Lin SS, Hor LI, et al. Draft Genome Sequences of Four Strains of Vibrio parahaemolyticus, Three of Which Cause Early Mortality Syndrome/Acute Hepatopancreatic Necrosis Disease in Shrimp in China and Thailand. Genome Announc. 2014;2(5).
Phiwsaiya K, Charoensapsri W, Taengphu S, Dong HT, Sangsuriya P, Nguyen GTT, et al. A Natural Vibrio parahaemolyticus ΔpirA (Vp) pirB (Vp+) Mutant Kills Shrimp but Produces neither Pir (Vp) Toxins nor Acute Hepatopancreatic Necrosis Disease Lesions. Appl Environ Microbiol. 2017;83(16).
Sanguanrut P, Munkongwongsiri N, Kongkumnerd J, Thawonsuwan J, Thi tamadee S, Boonyawiwat V, et al. A cohort study of 196 Thai shrimp ponds reveals a complex etiology for early
mortality syndrome (EMS). Aquaculture. 2018;493:26-36.
Wang Q, Yu Y, Zhang Q, Zhang X, Huang H, Xiang J, et al. Evaluation on the genomic selection in Litopenaeus vannamei for the resistance against Vibrio parahaemolyticus. Aquaculture. 2019;505:212-6.
Yáñez JM, Barría A, López ME, Moen T, Garcia BF, Yoshida GM, et al. Genomewide association and genomic selection in aquaculture. Rev Aquac. 2023;15(2):645-75.
Lyu D, Yu Y, Wang Q, Luo Z, Zhang Q, Zhang X, et al. Identification of Growth Associated Genes by Genome-Wide Association Study and Their Potential Application in the Breeding of Pacific White
Shrimp (Litopenaeus vannamei). Front Genet. 2021;12.
Wang Q, Yu Y, Yuan J, Zhang X, Huang H, Li F, et al. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei.BMC Genet. 2017;18(1):45.
Fu S, Liu J. Genome-wide association study identified genes associated with ammonia nitrogen tolerance in Litopenaeus vannamei. Front Genet. 2022;13.
Jones DB, Nguyen HT, Khatkar MS, Simma DB, Jerry DR, Raadsma HW, et al. The identification of a major sex QTL in the white-leg shrimp, Litopenaeus vannamei. Aquaculture. 2020;529:735673.
Medrano-Mendoza T, García BF, Caballero-Zamora A, Yáñez JM, Montoya-Rodríguez L, Quintana-Casares JC, et al. Genetic diversity, population structure, linkage disequilibrium and
GWAS for resistance to WSSV in Pacific white shrimp (Litopenaeus vannamei) using a 50K SNP chip. Aquaculture. 2023;562:738835.
Ibrahim AK, Zhang L, Niyitanga S, Afzal MZ, Xu Y, Zhang L, et al. Principles and approaches of association mapping in plant breeding. Trop Plant Biol. 2020;13(3):212-24.
Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev Aquac. 2018;10(3):670-82.
Meehan D, Xu Z, Zuniga G, Alcivar Warren A. High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei [Crustacea:Decapoda].
Mar Biotechnol (NY). 2003;5(4):311-30.
Pérez F, Ortiz J, Zhinaula M, Gonzabay C, Calderón J, Volckaert FA. Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris,
and Trachypenaeus birdy. Mar Biotechnol (NY). 2005;7(5):554-69.
Marques C, Santos C, Galetti Jr P, Freitas P. Informative microsatellites for fresh water and marine shrimp species. Int J Biodivers Conserv. 2013;5:599-603.
Alcivar-Warren A, Song L, Meehan Meola D, Xu Z, Xiang J-H, Warren W. Characterization and mapping of expressed sequence tags isolated from a subtracted cDNA library of Litopenaeus vannamei injected with white spot syndrome virus. J Shellfish Res. 2007;26(4):1247-58.
Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155(2):945-59.
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14(8):2611-20.
Hardy OJ, Vekemans X. spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2(4):618-20.
Matthies I, Hintum T, Weise S, Röder M. Population structure revealed by different
marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Mol Breed. 2012;30:951-66.
Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun.2019;10(1):356.
Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016;12(2):e1005767.
Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, et al. rMVP: A Memory efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genomics Proteomics Bioinformatics. 2021;19(4):619-28.
Bonferroni C. Teoria statistica delle classie calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 1936;8:3-62
Whankaew S, Suksri P, Sinprasertporn A, Thawonsuwan J, Sathapondecha P. Development of DNA Markers for Acute Hepatopancreatic Necrosis Disease Tolerance in Litopenaeus vannamei through a Genome-Wide Association Study. Biology. 2024;13:731.
Huang X, Xu Y, Hu X, Xu W, Su H, Wen G, et al. Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers. South China Fish Sci. 2019;15(1):54-62.
Guppy JL, Jones DB, Kjeldsen SR, Le Port A, Khatkar MS, Wade NM, et al. Development and validation of a RAD-Seq target-capture based genotyping assay for routine application in advanced black tiger shrimp (Penaeus monodon) breeding programs. BMC Genomics. 2020;21(1):541.
Zhang Q, Yu Y, Wang Q, Liu F, Luo Z, Zhang C, et al. Identification of Single Nucleotide Polymorphisms Related to the Resistance Against Acute Hepatopancre atic Necrosis Disease in the Pacific White Shrimp Litopenaeus vannamei by Target Sequencing Approach. Front Genet. 2019;10:700.
Wang Q, Yu Y, Zhang Q, Zhang X, Yuan J, Huang H, et al. A Novel Candidate Gene Associated With Body Weight in the Pacific White Shrimp Litopenaeus vannamei. Front Genet. 2019;10.
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, et al. SLAF-seq: An Efficient Method of Large-Scale De Novo SNP Discovery and Genotyping Using High-Throughput Sequencing. PLoS One. 2013;8(3):e58700.
Peng M, Zeng D, Zhu W, Chen X, Yang C, Liu Q, et al. Construction of a High-Density Genetic Map and Identification of Quantitative Trait Loci for Nitrite Tolerance in the Pacific White
Shrimp (Litopenaeus vannamei). Front Genet. 2020;11:571880.
Fernandes Júnior GA, de Oliveira HN, Carvalheiro R, Cardoso DF, Fonseca LFS, Ventura RV, et al. Whole-genome sequencing provides new insights into genetic mechanisms of tropical adaptation in Nellore (Bos primigenius indicus). Sci Rep. 2020;10(1):9412.
Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC, Buckland PR. Functional analysis of polymorphisms in the promoter regions of genes on 22q11. Hum Mutat. 2004;24(1):35-42.
Mishiro T, Ishihara K, Hino S, Tsutsumi S, Aburatani H, Shirahige K, et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 2009;28(9):1234-45.
Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L, Sinha S, de Lemos AS, et al. Genome-wide identification of micro RNAs regulating cholesterol and triglyceride homeostasis. Nat Med.
;21(11):1290-7.