Design of an Integrated Modern Explainable Machine Learning Framework for Blockchain Forensic Analysis
Main Article Content
บทคัดย่อ
The rapid expansion of blockchain technology has led to a surge in fraud cases, demanding advanced forensic methods to ensure security and transparency. Traditional static, rule-based models are inadequate for the complex and dynamic nature of blockchain transactions, while existing graph-based anomaly detection methods still struggle with temporal awareness, adaptability, and cross layer integration. These models also suffer from high false positives, inefficient thresholding, and limited explainability, reducing their effectiveness in real-world investigations. To address these gaps, we propose a Modern Explainable Machine Learning Framework for Blockchain Forensic Analysis, integrating five advanced AI techniques to enhance both fraud detection and interpretability. The Temporal Graph Transformer (TGT) identifies evolving transaction patterns with 96.5% accuracy, while Reinforcement Learning-Based Adaptive Fraud Thresholding (RL-FT) reduces false positives by 45%. Contrastive Self-Supervised Blockchain Embedding (CSBE) improves fraud separation by 30%, and Hybrid Diffusion-Based Anomaly Forecasting (HDAF) predicts future fraud with 94.1% accuracy. Finally, Multi-Modal Blockchain Forensic Fusion (MBFF) combines transactional, smart contract, and network data for 99.1% detection accuracy and 50% better explainability. This integrative forensic intelligence system effectively overcomes key limitations in current blockchain fraud analysis.
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
Patil H, Kohli RK, Puri S, et al. Potential applicability of blockchain technology in the maintenance of chain of custody in forensic casework. Egypt J Forensic Sci. 2024;14:12. doi:10.1186/s41935-023-00383-w.
Rani D, Gill NS, Gulia P, et al. A secure digital evidence preservation system for an IoT-enabled smart environment using IPFS, blockchain, and smart contracts. Peer-to-Peer Netw Appl. 2025;18(5). doi:10.1007/s12083-024-01855-z.
Li B, Cheng G, Gao H, et al. Scenarios analysis and performance assessment of blockchain integrated in 6G scenarios. Sci China Inf Sci. 2024;67:170301. doi:10.1007/s11432-023-4054-5.
Deepthi JVNR, Khan AK, Acharjee T. Multi-level data integrity model with dual immutable digital key-based forensic analysis in IoT network. SN Comput Sci. 2024;5:90. doi:10.1007/s42979-023-02337-4.
da Luz Lemos FA, dos Santos Cavali T, Fonseca KVO, et al. Enhancing the security of software-defined networking through forensic memory analysis. J Netw Syst Manage. 2024;32:82. doi:10.1007/s10922-024-09862-4.
Apirajitha PS, Devi RR. A novel blockchain framework for digital forensics in cloud environment using multi-objective krill herd cuckoo search optimization algorithm. Wireless Pers Commun. 2023;132:1083–1098. doi:10.1007/s11277-023-10649-0.
JJ L, Singh K, Chakravarthi B. Digital forensic framework for smart contract vulnerabilities using ensemble models. Multimed Tools Appl. 2024;83:51469–51512. doi:10.1007/s11042-023-17308-3.
Tripathi A, Prakash J. Patients electronic health records safeguarding mechanism based on data hiding and blockchain. Proc Indian Natl Sci Acad. 2023;89:689–704. doi:10.1007/s43538-023-00178-6.
Farao A, Paparis G, Panda S, et al. INCHAIN: a cyber insurance architecture with smart contracts and selfsovereign identity on top of blockchain. Int J Inf Secur. 2024;23:347–371. doi:10.1007/s10207-023-00741-8.
Castelo Gómez JM, Ruiz Villafranca S. Integrating the edge computing paradigm into the development of IoT forensic methodologies. Int J Inf Secur. 2024;23:1093–1116. doi:10.1007/s10207-023-00776-x.
Kamal R, Hemdan EED, El-Fishway N. An efficient security system based on cancelable face recognition with blockchain over cognitive IoT. Multimed Tools Appl. 2023;82:44741–44761. doi:10.1007/s11042-023-15534-3.
Bezanjani BR, Ghafouri SH, Gholamrezaei R. Fusion of machine learning and blockchain-based privacypreserving approach for healthcare data in the Internet of Things. J Supercomput. 2024;80:24975–25003. doi:10.1007/s11227-024-06392-3.
Ali J, Shan G, Gul N, et al. An intelligent blockchain-based secure link failure recovery framework for software-defined Internet-of-Things. J Grid Comput. 2023;21:57. doi:10.1007/s10723-023-09693-8.
SB G, Danti A. Blockchain-based security and authentication for forensics application using consensus proof of work and zero knowledge protocol. Int J Inf Technol. 2024. doi:10.1007/s41870-024-01864-4.
Ain QU, Javed A, Malik KM, et al. Regularized forensic efficient net: a game theory-based generalized approach for video deepfakes detection. Multimed Tools Appl. 2024. doi:10.1007/s11042-024-20268-x.
Pathak M, Mishra KN, Singh SP. Securing data and preserving privacy in cloud IoT-based technologies: an analysis of assessing threats and developing effective safeguard. Artif Intell Rev. 2024;57:269. doi:10.1007/s10462-024-10908-x.
Pocher N, Zichichi M, Merizzi F, et al. Detecting anomalous cryptocurrency transactions: an AML/CFT application of machine learning-based forensics. Electron Markets. 2023;33:37. doi:10.1007/s12525-023-00654-3.
Rastogi P, Singh D, Bedi SS. An improved blockchain framework for ORAP verification and data security in healthcare. J Ambient Intell Human Comput. 2024;15:2853–2868. doi:10.1007/s12652-024-04780-4.
Alevizos L. Automated cybersecurity compliance and threat response using AI, blockchain and smart contracts. Int J Inf Technol. 2025;17:767–781. doi:10.1007/s41870-024-02324-9.
Sharma N, Rohilla R. Scalable and cost-efficient PoA consensus-based blockchain solution for vaccination record management. Wireless Pers Commun. 2024;135:1177–1207. doi:10.1007/s11277-024-11115-1.
A J, P K, C VK, et al. DDoS mitigation using blockchain and machine learning techniques. Multimed Tools Appl. 2024;83:60265–60278. doi:10.1007/s11042-023-18028-4.
Cantelli-Forti A, Longo G, Lupia F, et al. WEFT: a consistent and tamperproof methodology for acquisition of automatically verifiable forensic web evidence. Int J Inf Secur. 2025;24:81. doi:10.1007/s10207-025-00991-8.
Chen Z, Liu F, Li D, et al. Video security in logistics monitoring systems: a blockchain-based secure storage and access control scheme. Cluster Comput. 2024;27:10245–10264. doi:10.1007/s10586-024-04667-1.
Rai M, Kumar S, Rathore PS. A systematic review of innovations for realtime image security in IoT applications using machine learning and blockchain. J Intell Manuf. 2024. doi:10.1007/s10845-024-02535-8.
Li S, Zhang H, Shi H, et al. A novel blockchain-enabled zerotrust-based authentication scheme in power IoT environments. J Supercomput. 2024;80:20682–20714.doi:10.1007/s11227-024-06262-y.