Prediction of Indonesian Coal Prices Using Support Vector Regression Method with Grid Search Optimization

Main Article Content

Joana Kriskinantyas Rahayu
Nariza Wanti Wulan Sari
Desi Yuniarti
Siti Mahmuda
M. Fathurahman

บทคัดย่อ

Coal prices are highly volatile due to fluctuations in global supply and demand, government policies, and economic and political factors. Therefore, accurate price prediction is essential and can be achieved using Support Vector Regression (SVR). This study aimed to identify the most accurate SVR model for forecasting Indonesian coal prices and analyze its prediction performance. The Radial Basis Function (RBF) kernel was used with hyperparameter ranges of 10−3 ≤ 𝐶 ≤ 102, 10−3 ≤ 𝛾 ≤ 102, and 𝜀 = 0.01, 0.02, 0.03, tested at data splits of 70:30, 80:20, and 90:10. Optimal hyperparameters were determined using the grid search algorithm, and model performance was evaluated using the Mean Absolute Percentage Error (MAPE). Results showed that the best prediction accuracy was achieved with a MAPE of 5.459%, indicating excellent model performance. The optimal configuration was the SVR with RBF kernel at a 90:10 ratio, where 𝐶 = 12.5, 𝛾 = 0.1, and 𝜀 = 0.025. The resulting model effectively approximated the actual coal price data, confirming its reliability for forecasting Indonesian coal prices.

Article Details

รูปแบบการอ้างอิง
Joana Kriskinantyas Rahayu, Nariza Wanti Wulan Sari, Desi Yuniarti, Siti Mahmuda, & M. Fathurahman. (2025). Prediction of Indonesian Coal Prices Using Support Vector Regression Method with Grid Search Optimization. Science & Technology Asia, 30(4), 82–89. สืบค้น จาก https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/259387
ประเภทบทความ
Physical sciences

เอกสารอ้างอิง

Luger GF. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 6th ed. United States of America: Pearson Addison Wesley; 2009.

Elwirehardja GN, Suparyanto T, Pardamean B. Pengenalan Konsep Machine Learning Untuk Pemula. 1st ed. Yogyakarta: Instiper Press; 2023.

Putra JWG. Pengenalan Konsep Pembelajaran Mesin dan Deep Learning. Edisi 1.4. 2020.

El Naqa I, Li R, Murphy JM. Machine Learning in Radiation Oncology: Theory and Applications. 1st ed. Switzerland: Springer International Publishing; 2015.

Han J, Pei J, Tong H. Data Mining: Concepts and Techniques. 4th ed. United States of America: Morgan Kaufmann Publisher; 2023.

Ngoc TT, Van Dai L, Thuyen CM. Support Vector Regression based on Grid Search method of Hyperparameters for Load Forecasting. 2021;18.

Purwoko CFF, Sediono S, Saifudin T, Mardianto MFF. Prediksi Harga Ekspor Non Migas di Indonesia Berdasarkan Metode Estimator Deret Fourier dan Support Vector Regression. Inferensi. 2023;6:45–55.

Umiyati A, Dasari D, Agustina F. Peramalan Harga Batubara Acuan Menggunakan Metode PSOSVR Dan IPSOSVR. Jurnal EurekaMatika. 2021;9:69–94.

Almas MF, Setiawan BD, Sutrisno. Implementasi Metode Backpropagation untuk Prediksi Harga Batu Bara. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 2018;2:6502–11.

Indonesian Coal Suppliers Association (ICSA). Memahami Harga Batu Bara Indonesia: Faktor yang Mempengaruhinya. Jakarta: ICSA; 2023.

CNN Indonesia. 5 Faktor Harga Batu Bara Terus Melonjak Versi Eks Wamen ESDM. 2022.

Du KL, Swamy MNS. Neural Networks and Statistical Learning. 2nd ed. United Kingdom: Springer; 2019.

Salsabilla A, Satyahadewi N, Andani W. Implementation Grid Search of RBF and Polynomial on Support Vector Regression for Closing Stock Prices Prediction on PT Indofarma (INAF). VARIANCE: Journal of Statistics and Its Applications. 2024;6:133–42.

Hutter F, Kotthoff L, Vanschoren J. Automated Machine Learning: Methods, Systems, Challenges. Switzerland: Springer Nature Switzerland AG; 2020.

Mulyawan, Subagja R, Rohman D, Efendi DI. Implementasi Support Vector Regression untuk Prediksi Harga Rumah Dengan Optimasi Grid Search. Jurnal Elektronik Ilmu Komputer Udayana. 2024;12:687–96.

Awad M, Khanna R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. New York: Apress Media; 2015.

Prakoso BH. Implementasi Support Vector Regression pada Prediksi Inflasi Indeks Harga Konsumen. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer. 2019;19:155–62.

Smola AJ, Schölkopf B. A Tutorial on Support Vector Regression. Statistics and Computing. 2004;14.

Krislianti DE, Zukhronah E, Susanti Y. Peramalan Harga Minyak Menggunakan Autoregressive Integrated Moving Average dan Support Vector Regression. Prosiding Seminar Pendidikan Matematika dan Matematika. 2023;7.