Does Water Clustering Accelerate Acetylacetone Tautomerization Reaction?
Main Article Content
บทคัดย่อ
𝛽-diketone tautomerization is a key reaction in synthetic chemistry that is known to be accelerated in polar protic solvents, such as water. However, the mechanism and number of water molecules for optimal catalytic effect remain unclear. To investigate this aspect, we employed a hybrid cluster-continuum approach using water clusters, (𝐻2𝑂)𝑛, 𝑛 = 1 ∼ 4, to simulate tautomerization of acetylacetone (AA). We utilized CBS-Q energies, along with the geometries and solvation energies obtained from B3LYP/6-311+G(2d,2p), using the polarizable continuum model. The addition of one water molecule was shown to lower the activation energy (Ea) by 24 kcal/mol by actively participating in the proton transfer. Additional water molecules can further lower the Ea by 5 to 10 kcal/mol; however, the decrease in Ea saturates at n = 3 water molecules. Water molecules also help stabilize AA with a solvation energy of −6 kcal/mol per 𝐻2𝑂. These findings highlight the critical role of explicit water clusters in promoting the tautomerization reaction for AA.
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
Alagona G, Ghio C, Nagy PI. The catalytic effect of water on the keto–enol tautomerism. Pyruvate and acetylacetone: a computational challenge. Phys Chem Chem Phys. 2010;12(35):10173.
Zhang C, Zhang G, Zheng H, Zhang S. The interplay of hydration and hydrolysis upon the keto–enol tautomerism of β-diketones. J Chem Educ. 2024;101(12):5460–7.
Stary J, Liljenzin JO. Critical evaluation of equilibrium constants involving acetylacetone and its metal chelates. Pure Appl Chem. 1982;54(12):2557–92.
Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 2004;57(9–10):453–5.
Spencer JN, Holmboe ES, Kirshenbaum MR, Firth DW, Pinto PB. Solvent effects on the tautomeric equilibrium of 2,4-pentanedione. Can J Chem. 1982;60(10):1178–82.
Rogers MT, Burdett JL. Keto–enol tautomerism in β-dicarbonyls studied by nuclear magnetic resonance spectroscopy: II. Solvent effects on proton chemical shifts and equilibrium constants. Can J Chem. 1965;43(5):1516–26.
Drexler EJ, Field KW. An NMR study of keto-enol tautomerism in β-dicarbonyl compounds. J Chem Educ. 1976;53(6):392.
Watarai H, Suzuki N. Keto-enol tautomerization rates of acetylacetone in mixed aqueous media. J Inorg Nucl Chem. 1974;36(8):1815–20.
Casier B, Sisourat N, Carniato S, Capron N. Keto–enol tautomerism in micro-hydrated acetylacetone: an atomsin-molecules study. Theor Chem Acc. 2018;137(7).
Yamabe S, Tsuchida N, Miyajima K. Reaction paths of keto–enol tautomerization of β-diketones. J Phys Chem A. 2004;108(14):2750–7.
Freitag MA, Pruden TL, Moody DR, Parker JT, Fallet M. On the keto–enol tautomerization of malonaldehyde: an effective fragment potential study. J Phys Chem A. 2007;111(9):1659–66.
Sloop JC, Bumgardner CL, Washington G, Loehle WD, Sankar SS, Lewis AB. Keto–enol and enol–enol tautomerism in trifluoromethyl-β diketones. J Fluor Chem. 2006;127(6):780–6.
Coussan S, Manca C, Ferro Y, Roubin P. UV and IR photoisomerizations of an intramolecularly H-bonded molecule: acetylacetone trapped in nitrogen matrix. Chem Phys Lett. 2003;370(1–2):118–25.
Coussan S, Ferro Y, Trivella A, Rajzmann M, Roubin P, Wieczorek R, et al. Experimental and theoretical UV characterizations of acetylacetone and its isomers. J Chem Phys. 2006;110(11):3920–6.
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–52.
McLean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys. 1980;72(10):5639–48.
Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105(8):2999–3094.
Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Phys Chem A. 1999;110(6):2822–7.
Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VII. Use of the minimum population localization method. J Phys Chem. 2000;112(15):6532–42.
Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett. 1996;256(4–5):454–64.