Is Change of Spin State Critical for 3d Transition Metal Carbon Monoxide Bonding?
Main Article Content
บทคัดย่อ
Transition metal carbonyl (TM-CO) interaction is seen in different areas, including catalysts for CO2 reduction and biological processes involving CO gas. Due to the complex occupation of 3d orbitals, the spin state can change when a TM binds with various gas molecules. In this study, we evaluated the simplest of such spin crossover reactions: 3d TM atom + CO in detail using B3LYP/6-31+G(d,p). Previous studies on TM-CO by Fournier evaluated the dissociation limit and adduct energies and compared spin states. In the present study, we extended the study to include the calculation of the association potential energy curve. We focused on finding the crossing point of two spin states as a function of the TM-C bond length. We also evaluated the relationship between the change of spin state and stable binding between the TM atom and the CO molecule. We found that Sc, Ti, Fe, Co, and Ni + CO are candidates to be spin crossover reactions that change spin upon TM-CO bond formation. Furthermore, among the 3d TM atoms, the most strongly binding TM atoms were Ni, Ti, Fe, and Co, which showed spin state change upon bonding.
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22(4):210-6.
DeKock RL. Preparation and identification of intermediate carbonyls of nickel and tantalum by matrix isolation. Inorg Chem. 1971;10(6):1205-11.
Kündig EP, McIntosh D, Moskovits M, Ozin GA. Binary carbonyls of platinum, Pt(CO)n (where n = 1-4). Comparative study of the chemical and physical properties of M(CO)n (where M = nickel, palladium, or platinum; n = 1-4). J Am Chem Soc. 1973;95(22):7234-41.
Huber H, Kündig EP, Ozin GA, Poe AJ. Reactions of monatomic and diatomic manganese with carbon monoxide. Matrix infrared spectroscopic evidence for pentacarbonylmanganese Mn(CO)5 and the binuclear carbonyls Mn2(CO)n (where n = 1 or 2). J Am Chem Soc.
;97(2):308-14.
Hanlan LA, Huber H, Kündig EP, McGarvey BR, Ozin GA. Chemical synthesis using metal atoms. Matrix infrared, Raman, ultraviolet-visible, and electron spin resonance studies of the binary carbonyls of cobalt, Co(CO)n (where n = 1-4), and the distortion problem in tetracarbonylcobalt. J Am Chem Soc. 1975;97(24):7054-68.
Tremblay B, Alikhani ME, Manceron L. The Co + CO reaction: Infrared matrix isolation study and density functional calculations. J Phys Chem A. 2001;105(50):11388-94.
Huber H, Kündig EP, Moskovits M, Ozin GA. Binary copper carbonyls. Synthesis and characterization of tricarbonylcopper, dicarbonylcopper, monocarbonylcopper, and hexacarbonyldicopper. J Am Chem Soc. 1975;97(8):2097-106.
Hanlan L, Huber H, Ozin GA. Direct synthesis using vanadium atoms. 3. Binary carbonyls of vanadium, V(CO)n (where n = 1-5). Inorg Chem. 1976;15(11):2592-7.
Engelking PC, Lineberger WC. Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n, n = 0-4. J Am Chem Soc. 1979;101(19):5569-73.
Peden CHF, Parker SF, Barrett PH, Pearson RG. Moessbauer and infrared studies of matrix-isolated iron-carbonyl complexes. J Phys Chem. 1983;87(13):2329-36.
Stevens AE, Feigerle CS, Lineberger WC. Laser photoelectron spectrometry of Ni(CO)n-, n = 1-3. J Am Chem Soc. 1982;104(19):5026-31.
Tanaka K, Sakaguchi K, Tanaka T. Timeresolved infrared diode laser spectroscopy of the ν1 band of the iron carbonyl radical (FeCO) produced by the ultraviolet photolysis of Fe(CO)5. J Chem Phys. 1997;106(6):2118-28.
Rossomme E, Lininger CN, Bell AT, Head-Gordon T, Head-Gordon M. Electronic structure calculations permit identification of the driving forces behind frequency shifts in transition metal monocarbonyls. Phys Chem Chem Phys. 2020;22(2):781-98.
Fournier R. Theoretical study of the monocarbonyls of first-row transition metal atoms. J Chem Phys. 1993;99(3):1801-15.
Blomberg MRA, Brandemark UB, Siegbahn PEM, Wennerberg J, Bauschlicher CW. The nickel-carbonyl binding energy in Ni(CO)x (x = 1-4). A theoretical investigation. J Am Chem Soc. 1988;110(20):6650-5.
Frenking G, Pidun U. Ab initio studies of transition-metal compounds: The nature of the chemical bond to a transition metal. J Chem Soc Dalton Trans. 1997;(10):1653-62.
Yoshida D, Takahashi K. Multistate transition metal carbonyl bonding beyond minimum energy pathway: Nonlocality of spin–orbit interaction. Inorg Chem. 2025;64(1):286-94.
Takahashi K. Origin of spin crossover in the association of carbon monoxide and transition metal atoms. PACCON2025 e-Proceedings. 2025;1.
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648-52.
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785-9.
Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980;72(1):650-4.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision A.03. Wallingford CT: Gaussian Inc.; 2016.
Pilme J, Silvi B, Alikhani ME. Structure and stability of M−CO, M = firsttransition-row metal: An application of density functional theory and topological approaches. J Phys Chem A. 2003;107(22):4506-14.