Dragonfly Algorithm-Optimized Time-Varying Synergetic Control for Droplet Positioning in EWOD Systems

Main Article Content

Ishani G.J.K.U. Jayawardhana
Arsit Boonyaprapasorn
Suwat Kuntanapreeda
Woraprot Rukkhun
Thunyaseth Sethaput

Abstract

This paper presents the design and implementation of a Time-Varying Synergetic
Controller (TVSC) for precise droplet position control in an Electrowetting-on-Dielectric
(EWOD) system. The proposed controller integrates the advantages of synergetic control (SC) and time-varying sliding mode control to enhance convergence speed while eliminating chattering in the control input. The TVSC approach utilizes macro variables derived from a time-varying sliding surface to achieve smooth and stable actuation. To optimize the controller parameters, a meta-heuristic dragonfly optimization algorithm (DA) is employed. The stability of the proposed control scheme is analytically validated using the Lyapunov stability theorem. Simulation studies are conducted to evaluate the performance of TVSC in comparison to conventional SC and Sliding Mode Control (SMC) under both translational and periodic droplet motion scenarios. The results demonstrate that TVSC achieves a faster convergence rate than SC while mitigating the chattering effect inherent in SMC. Additionally, under the influence of external disturbances, TVSC maintains superior robustness and precision in droplet positioning. This study highlights the effectiveness of TVSC in EWOD based microfluidic applications

Article Details

How to Cite
Jayawardhana, I. G., Boonyaprapasorn, A. ., Kuntanapreeda, S. ., Rukkhun, W. ., & Sethaput, T. (2025). Dragonfly Algorithm-Optimized Time-Varying Synergetic Control for Droplet Positioning in EWOD Systems. Science & Technology Asia, 30(3), 163–173. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/261542
Section
Articles

References

Cho SK, Moon H, Kim CJ. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst. 2003;12(1):70-80.

Berthier J. Microdrops and digital microfluidics. Norwich (NY): William Andrew; 2008.

Welch ERF, Lin YY, Madison A, Fair RB. Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J. 2011;6(2):165-76.

Schaler E, Tellers M, Gerratt A, Penskiy I, Bergbreiter S. Toward fluidic microrobots

using electrowetting. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation; 2012 May; Saint Paul, MN. p. 3461-6.

Moon I, Kim J. Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens Actuators A Phys. 2006;130-131:537-44.

Crane NB, Onen O, Carballo J, Ni Q, Guldiken R. Fluidic assembly at the microscale: progress and prospects. Microfluid Nanofluidics. 2012;14(3-4):383-419.

Braun T, et al. Contactless component handling on PCB using EWOD principles. In: Proceedings of the 2008 10th Electronics Packaging Technology Conference; 2008 Dec; Singapore. p. 186-92.

Utkin V, Guldner J, Ge SS. Sliding mode control in electro-mechanical systems. 2nd ed. Boca Raton (FL): CRC Press; 2009.

Slotine JJE, Li W. Applied nonlinear control. Englewood Cliffs (NJ): Prentice Hall; 1991.

Liu J, Wang X. Advanced sliding mode control for mechanical systems. Beijing: Tsinghua University Press; Berlin: Springer-Verlag; 2011.

Santi E, Monti A, Li D, Proddutur K, Dougal RA. Synergetic control for power electronics applications: a comparison with the sliding mode approach. J Circuits Syst Comput. 2004;13(4):737-60.

Santi E, Monti A, Li D, Proddutur K, Dougal RA. Synergetic control for DC-DC boost converter: implementation options. IEEE Trans Ind Appl. 2003;39(6):1803-13.

Kolesnikov AA, Mushenko AS. Applied theory of nonlinear system design: method comparison. In: Proceedings of the 2019 III International Conference on Control, Automation and Systems (CTS); 2019; St. Petersburg, Russia. p. 50-3.

Kondratiev I, Santi E, Dougal R. Robust nonlinear synergetic control for mparallel -connected DC-DC boost converters. In: Proceedings of the 2008 IEEE Power Electronics Specialists Conference (PESC); 2008; Rhodes, Greece. p. 2222-8.

Liu CH, Hsiao MY. A finite time synergetic control scheme for robot manipulators. Comput Math Appl. 2012;64(5):1163-9.

Boonyaprapasorn A, Kuntanapreeda S, Ngiamsunthorn PS, Kumsaen T, Sethaput T. Time-varying sliding mode controller for heat exchanger with dragonfly algorithm. Int J Electr Comput Eng. 2023;13(4):3958-68.

Boonyaprapasorn A, Choopojcharoen T, Pengwang E, Natsupakpong S, Maneewarn T, Sa-Ngiamsunthorn P, Thung-od K. The design of a synergetic controller for tuberculosis epidemic system. Int J Mech Eng Robot Res. 2020;9(10):1439-46.

Chen S, Huang H. Time-varying sliding mode surface control for high order affine

non-linear systems. In: Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC); 2017 May; Hefei, China. p.559-65.

Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for

solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. 2016;27(4):1053-73.

Bhattacharjee B, Najjaran H. Simulation of droplet position control in digital microfluidic systems. J Dyn Syst Meas Control. 2010;132(1):014501-1–3.

Bahadur V, Garimella SV. An energy based model for electrowetting-induced droplet actuation. J Micromech Microeng. 2006;16:1494-503.

Oprins H, Vandevelde B, Baelmans M. Modeling and control of electrowetting induced droplet motion. Micromachines. 2012;3(1):150-67.

Boonyaprapasorn A, Pengwang E, Maneewarn T. Applying fuzzy sliding mode

control on electrowetting-on-dielectric system. In: Proceedings of the International Conference on Artificial Life and Robotics (ICAROB); 2016 Jan; Oita, Japan. vol. 21. p. 186-91.