Comparative Evaluation of Hybrid Deep Learning Models for BISINDO Alphabetic Video
##plugins.themes.bootstrap3.article.main##
摘要
Accurately recognizing BISINDO (Bahasa Isyarat Indonesia) alphabetic gestures from video data presents significant challenges due to variations in pose, lighting conditions, and background noise. While previous studies have explored individual deep learning models, such as CNNs or LSTMs, the comparative evaluation of hybrid architectures that combine spatial and temporal feature extraction remains limited, especially in video-based sign language recognition. This study proposes a hybrid deep learning approach that integrates ResNet50 for spatial feature extraction with CNN and LSTM architectures for temporal sequence modeling, aiming to enhance the robustness and accuracy of BISINDO gesture classification. Compared to conventional CNN-based models, our hybrid architecture demonstrated an improvement of 3.4% in F1-score and over 17.6% in precision on challenging gestures. This systematic comparative evaluation reveals the superior capability of hybrid models to generalize in complex environments. Sample videos used in this study contain various backgrounds and signer styles to reflect real-world conditions. The findings contribute to developing more reliable sign language recognition systems and provide insights for future research and practical applications in real-time gesture recognition.
##plugins.themes.bootstrap3.article.details##
参考
Triwijoyo BK, Adil A. Deep learning approach for sign language recognition. J Imial Tek Elektro Komput dan Inform. 2023;9(1):12–21.
Bird JJ, Ekárt A, Faria DR. British sign language recognition via late fusion of computer vision and leap motion with transfer learning to American sign language. Sensors (Basel). 2020;20(18):15151.
Kakizaki M, Miah ASM, Hirooka K, Shin J. Dynamic Japanese sign language recognition through hand pose estimation using effective feature extraction and classification approach. Sensors. 2024;24(3).
Andreas R, Maria S, Satyadhana AK, Warnars HLHS, Ramadhan A, Muyeba MK. Mobile application for children to learn BISINDO sign language. In: Proc 6th Int Conf Inven Comput Technol (ICICT 2023). 2023:774–80.
Handhika T, Lestari DP, Sari I, Zen RIM, Murni. The generalized learning vector quantization model to recognize Indonesian sign language (BISINDO). In: Proc 3rd Int Conf Informatics Comput (ICIC 2018). 2018:1–6.
Nugraheni AS, Husain AP, Unayah H. Optimalisasi penggunaan bahasa isyarat dengan SIBI dan BISINDO pada mahasiswa difabel tunarungu di Prodi PGMI UIN Sunan Kalijaga. J Holistika. 2023;5(1):28.
Sujatmiko D, Sari CA, Rachmawanto EH, Krismawan AD, Altamer BR, Alkhafaji MA. AlexNet architecture-based convolution neural network for realtime audioto-text translator of BISINDO hand sign. In: Proc Int Semin Appl Technol Inf Commun (iSemantic 2023). 2023:429–34.
Aljabar A, Suharjito. BISINDO (Bahasa isyarat Indonesia) sign language recognition using CNN and LSTM. Adv Sci Technol Eng Syst J. 2020;5(5):282–7.
Joan D, Vincent V, Daniel KJ, Achmad S, Sutoyo R. BISINDO hand-sign detection using transfer learning. In: Proc 8th Int Conf Recent Adv Innov Eng (ICRAIE 2023). 2023:1–7.
Fauzi MZ, Sarno R, Hidayati SC. Recognition of real-time BISINDO sign language-to-speech using machine learning methods. In: Proc Int Conf Comput Sci Inf Technol Eng (ICCoSITE 2023). 2023:986–91.
Yap S, Panggiri BN, Darian G, Muliono Y, Prasetyo SY. Enhancing BISINDO recognition accuracy through comparative analysis of three CNN architecture models. In: Proc Int Conf Inf Manag Technol (ICIMTech 2023). 2023:732–7.
Setiawan FA, Rohmah ZA, Laxmi GF. Indonesian sign language (BISINDO) alphabet detection using the You Only Look Once (YOLO) algorithm version 8. In: Proc Int Conf Comput Control Informatics Appl (IC3INA 2024). 2024:388–93.
Kaviya BN, Krishnaveni N. Sign language recognition using deep learning. Int J Eng Res Technol. 2024;12(3):1–10.
Baihan A, Alutaibi AI, Alshehri M, Sharma SK. Sign language recognition using modified deep learning network and hybrid optimization: a hybrid optimizer (HO) based optimized CNNSa-LSTM approach. Sci Rep. 2024;14(1):26111.
Lahari VR, et al. Sign language classification using deep learning convolution neural networks algorithm. J Inst Eng Ser B. 2024;105(5):1347–55.
Sari IP, Mumtas F, Fauzan Putra ZEF, Sari RD, Zaidiah A, Snatoni MM. Enhanced few-shot learning for Indonesian sign language with prototypical networks approach. In: Proc Int Conf Informatics Multimedia Cyber Inf Syst (ICIMCIS 2023). 2023:278–83.
Novianty A, Azmi F. Sign language recognition using principal component analysis and support vector machine. Int J Appl Inf Technol. 2021;4(1):49.
Indra D, Salim Y, Herman, Atmajaya D, Lb PL, Hasanuddin T. Bisindo alphabets edge detection using color tracing of object boundary. In: Proc 2nd East Indones Conf Comput Inf Technol Internet Things Ind (EIConCIT 2018). 2018:5–9.
Sihananto AN, Safitri EM, Maulana Y, Fakhruddin F, Yudistira ME. Indonesian sign language image detection using convolutional neural network (CNN) method. Inspir J Teknol Inf dan Komun. 2023;13(1):13–21.
Saranya R, Paneerselvam K, Prateeksha Y, Raghunath AP, Ridish R. Sign language recognition using convolutional neural network. In: Proc 3rd IEEE Int Conf ICT Bus Ind Gov (ICTBIG 2023). 2023;12(10):415–22.
Ahmad N, Wijaya ES, Tjoaquinn C, Lucky H, Iswanto IA. Transforming sign language using CNN approach based on BISINDO dataset. In: Proc Int Conf Informatics Multimedia Cyber Inf Syst (ICIMCIS 2023). 2023:543–8.
Hidayat MR. BISINDO [dataset]. 2021. Available from: https://www.kaggle.com/datasets/rizkyyangpalsu/bisindo-video-dataset. Accessed 2024 Dec 18.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR 2016). 2016:770–8.
Xu Y, Yang W, Wu X, Wang Y, Zhang J. ResNet model automatically extracts and identifies FT-NIR features for geographical traceability of Polygonatum kingianum. Foods. 2022;11(22):1–18.
Pujiono H, Vitianingsih AV, Kacung S, Maukar AL, Wati SFA. Application of Faster R-CNN deep learning method for rice plant disease detection. J ELTIKOM Tek Elektro Teknol Inf dan Komput. 2024;8(2):111–8.
Sulistianingsih N, Martono GH. Enhancing predictive models: an in-depth analysis of feature selection techniques coupled with boosting algorithms. Matrik J Manajemen Tek Inform Rekayasa Komput. 2024;23(2):353–64.