On the Convergence and Stability of a Hybrid Iteration Scheme in Uniformly Convex Banach Space
##plugins.themes.bootstrap3.article.main##
摘要
A new iterative algorithm for approximating fixed points is considered on the lines of the iterative algorithm considered by Pansuwan and Sintunavarat [1]. The convergence of the considered iterative algorithm is established. Finally, the convergence rate of the new
iterative algorithm is compared with that of the iterative algorithm considered in [1].
##plugins.themes.bootstrap3.article.details##
参考
A. Pansuwan and W. Sintunavarat. The New Hybrid Iterative Algorithm for Numerical Reckoning Fixed Points of Suzuki’s Generalized Nonexpansive Mappings with Numerical Experiments. Thai J. Math. 2021; 19 (1): 157-68.
W. R. Mann. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953; 44: 506-10.
S. Ishikawa. Fixed Point by a New Iteration Method. Proc. Amer. Math. Soc. 1974; 44 (1): 147-50.
G. Jungck. Commuting mappings and fixed points. Amer. Math. Monthly. 1976; 83: 261-3.
B. E. Rhoades. Some fixed point iteration procedures. Int. J. Math. Math. Sci. 1991; 14 (1): 1-16.
M. A. Noor. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000; 251 (1): 217-29.
R. P. Agarwal, D. O’Regan, D. R. Sahu. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings.
J. Nonlinear Convex Anal. 2007; 8: 61-79.
G. Pisier, Martingales in Banach spaces (Vol. 155). Cambridge University Press; 2016.
T. Suzuki. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008; 340 (2): 1088-95.
A. M. Harder and T. L. Hicks. A stable iteration procedure for nonexpansive mappings. Math. Japon. 1988; 33 (5): 687-92.
H. F. Senter and W. G. Dotson Jr. Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 1974; 44 (2): 375-80.
A. Abkar and M. Eslamian. Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces. Fixed Point Theory Appl. 2010; Article ID 457935.
N. Haokip. Convergence of an iteration scheme in convex metric spaces. Proyecciones (Antofagasta, On line). 2022; 41 (3): 777-90.