A Poisson-Generalized Mixture Exponential Distribution
Keywords:
count data, maximum likelihood, overdispersion, index of dispersion, mixed PoissonAbstract
In this study, a new Poisson-generalized exponential distribution is proposed. Its statistical properties, including the cumulative distribution function, probability generating function, moment generating function, survival function, and index of dispersion, are derived. The proposed distribution has three parameters and exhibits a right-skewed, unimodal shape. Parameter estimation is performed using the maximum likelihood method. The distribution is then applied to two real overdispersed count datasets and compared with the Poisson and negative binomial distributions. The results indicate that the Poisson-generalized exponential distribution provides a better fit to both datasets based on the Akaike information criterion, Bayesian information criterion, negative log-likelihood, and the Kolmogorov–Smirnov goodness-of-fit test. These findings suggest that it is a viable alternative for modeling overdispersed count data. Future research may explore its extension to regression frameworks and other applied contexts.
References
Arnold, T.B. & Emerson, J.W. (2011). Nonparametric goodness-of-fit tests for discrete null distributions. The R Journal, 3(2), 34-39.
Agresti, A. (2007). An introduction to categorical data analysis. New Jersey: John Wiley & Sons.
Ahsan-ul-Haq, M., Al-Bossly. A., El-Morshedy, M., & Eliwa, M.S. (2022). Poisson XLindley distribution for count data: Statistical and Reliability Properties with Estimation Techniques and Inference. Computational Intelligence and Neuroscience, 2022, https://doi.org/10.1155/2022/6503670.
Cameron, A.C., & Trivedi, P.K. (2013). Regression Analysis of Count Data (2nd Edition). Cambridge University Press.
Chesneau, C., Tomy, L., Jose. M. (2023). On a New Two-parameter Weighted Exponential Distribution and Its Application to the COVID-19 and Censored Data. Thailand Statistician, 22(1), 17-30.
Das, K.K., Ahmed, I., & Bhattacharjee, S. (2018). A new three-parameter Poisson-Lindley distribution for modelling over-dispersed count data. International Journal of Applied Engineering Research, 13(23), 16468–16477.
Hamedani, G.G. (2020). Characterizations of the new Poisson-weighted exponential and the exponentiated weibull-geometric discrete distributions. Pakistan Journal of Statistics and Operation Research, 16(4), 851–854.
Hilbe, J.M. (2014). Modeling Count Data. Cambridge University Press.
Shanker, R. & Shukla, K.K. (2019). On Poisson-Weighted Lindley Distribution and Its Applications. Journal of Scientific Research, 11(1), 1–13.
Hosmer, D and Lemeshow, S. (2000), Applied Logistic Regression, Wiley.
Ramesh, K. J.& Vijay, K. (2021). Poisson Generalized Rayleigh Distribution: Properties and Applications. International Journal of Statistics and Applied Mathematics, 6(1), 90-99.
R Core Team. 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: Austria.
Steenbergen, M.R. (2006). Maximum Likelihood Programming in R. Department of Political Science, University of North Carolina, Chapel Hill.
Yang, Y., Tian, W. & Tong, T. (2021). Generalized mixtures of exponential distribution and associated inference. Mathematics, 9(1371), https://doi.org/10.3390/math9121371.
Zamani, H., Faroughi, P. & Ismail, N. (2014). Bivariate Poisson-weighted exponential distribution with applications. AIP Conference Proceedings, 964-968, doi:10.1063/1.4882600.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Statistics and Information Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลที่ปรากฏในบทความที่ตีพิมพ์ในวารสารสถิติประยุกต์และเทคโนโลยีสารสนเทศถือเป็นความคิดเห็นส่วนบุคคลของผู้เขียนแต่ละท่าน ความผิดพลาดของข้อความและผลที่อาจเกิดจากนำข้อความเหล่านั้นไปใช้ผู้เขียนบทความจะเป็นผู้รับผิดชอบแต่เพียงผู้เดียว บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารถือเป็นลิขสิทธิ์ของวารสาร หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสาร ก่อนเท่านั้น