Cognitive and Behavioral Factors Affecting Thai Farmers’ Intention to Use IoT in Smart Agriculture
Keywords:
Smart Agriculture, IoT, Technology Acceptance Model, Social Cognitive TheoryAbstract
The objective of this study is to examine the cognitive and behavioral factors that affect Thai Farmers’ Intention to use IoT in Smart Agriculture. Data were gathered from a simple random sample of 400 Thai Farmers who were familiar with IoT technologies but had not yet implemented them in their agricultural practices. Structural Equation Modeling was used to assess both direct and indirect effects of various factors on IoT adoption. The results show that cognitive factors -- namely perceived security, self-efficacy, cost-effectiveness, enjoyment, and perceived control -- significantly influence farmers' intention to use IoT through their perceived usefulness. In particular, the perceived enjoyment and perceived control have a significant direct influence on perceived usefulness, while other cognitive factors have only indirect effects. For behavioral factors, the intention to use IoT technology was influenced directly and indirectly by cognitive factors through perceived usefulness and perceived ease of use. These findings provide empirical insights for government agencies in designing effective and sustainable policies to promote IoT adoption in the agricultural sector. Moreover, developers of IoT devices and platforms can utilize these insights to design products that align with the needs and behaviors of Thai farmers.
References
เดลินิวส์. (2568, กุมภาพันธ์). เปิดตัว “HandySense B-Farm” ฟาร์มอัจฉริยะ ยกระดับเกษตรกรไทย. เดลินิวส์. เข้าถึงจาก https://www.dailynews.co.th/news/4416742.
ธาวิดา ศิริสัมพันธ์. (2567, กรกฎาคม). Smart Farm IOT นวัตกรรมเกษตรอัจฉริยะ สร้างใช้เองได้ ลดต้นทุน ลดเวลา ง่ายนิดเดียว. ข่าวสด. เข้าถึงจาก https://www.khaosod.co.th/technologychaoban/techno-news/article_220675.
สำนักงานส่งเสริมเศรษฐกิจดิจิทัล. (2564). รายงานทิศทางเทคโนโลยีดิจิทัลและการเกษตรอัจฉริยะของไทย. เข้าถึงเมื่อ 30 เมษายน 2568 จาก https://www.depa.or.th/th/article-view/digital-technology-agriculture-data-statistics-2564.
Aboobucker, I., & Bao, Y. (2019). What obstruct customer acceptance of internet banking? Security and privacy, risk, trust and website usability and the role of moderators. The Journal of High Technology Management Research, 29(1), 68–84.
Alcon, F., de-Miguel, M. D., & Martínez-Paz, J. M. (2021). Farmers’ assessment of the cost-effectiveness of water-saving technologies for irrigation. Agricultural Water Management, 243, 106509.
Alkawsi, G. N. A. (2018). A systematic review of individuals’ acceptance of IoT-based technologies. International Journal of Engineering & Technology, 7(4.34), 524–529.
Almaiah, M. A., Al-Rahmi, A., Alturise, F., Hassan, L., Lutfi, A., Alrawad, M., Aldhyani, T. H. H. (2022). Investigating the effect of perceived security, perceived trust, and information quality on mobile payment usage through near-field communication (NFC) in Saudi Arabia. Electronics, 11(23), 3926.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Arumugam, A., Khazaei, H., Bhaumik, A., & Kanesan, T. (2022). Analyzing the factors influencing digital technology adoption in Malaysian manufacturing SMEs. WSEAS Transactions on Business and Economics, 19, 1777–1792.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman.
Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming. (3rd ed.). New York: Routledge.
Chan, K. Y., Gong, M., Xu, Y., & Thong, J. Y. L. (2008). Examining user acceptance of SMS: An empirical study in China and Hong Kong. In Proceedings of the 12th Pacific Asia Conference on Information Systems (PACIS 2008), 294. Retrieved from https://aisel.aisnet.org/pacis2008/294.
Chandio, A. A., Jiang, Y., Rehman, A., Twumasi, M. A., & Pathan, A. G. (2021). Determinants of Internet of Things (IoT) adoption for agriculture: Evidence from rural areas of Pakistan. Sustainability, 13(7), 4208.
Che Nawi, N., Abdullah, A. M., & Nursalihah, A. R. (2015). Examining the key factors affecting e-service quality of small online apparel businesses in Malaysia. SAGE Open, 5(2), 1–10.
Chong, A. Y. L., Ooi, K. B., Lin, B., & Raman, M. (2010). Determinants of intention to use Internet-based supply chain management (SCM) systems: A structural equation modeling approach. Decision Support Systems, 49(1), 138–150.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211.
da Silveira, F., & Amaral, F. G. (2022). Agriculture 4.0. In Q. Zhang (Ed.), Encyclopedia of Smart Agriculture Technologies (pp. 1–5). Springer.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press.
Dong, H., Zhang, X., Chen, Y., & Li, B. (2022). Understanding ecological agricultural technology adoption: The role of perceived usefulness and perceived ease of use on farmers’ intention to adopt rice–shrimp crop technologies in China. Frontiers in Environmental Science.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2009). G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474.
Flavián, C., & Guinalíu, M. (2006). Consumer trust, perceived security and privacy policy: Three basic elements of loyalty to a web site. Industrial Management & Data Systems, 106(5), 601–620.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). Sensors, 20(4), 1042.
Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828–831.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. (7th ed.). Upper Saddle River, NJ: Pearson Education.
Handoyo, S. (2024). Purchasing in the digital age: A meta-analytical perspective on trust, risk, security, and e-WOM in e-commerce. Heliyon, 10(3), e29714.
Hanif, Y., & Lallie, H. S. (2021). Security factors on the intention to use mobile banking applications in the UK older generation (55+): A mixed-method study using modified UTAUT and MTAM. Technology in Society, 67, 101693.
Jabbari, A., Humayed, A., Reegu, F. A., Uddin, M., Gulzar, Y., & Majid, M. (2023). Smart farming revolution: Farmer’s perception and adoption of smart IoT technologies for crop health monitoring and yield prediction in Jizan, Saudi Arabia. Sustainability, 15(19).
Kline, R. B. (2016). Principles and practice of structural equation modeling. (4th ed.). Guilford Press.
Lai, P. C. (2017). The literature review of technology adoption models and theories for the novelty technology. Journal of Information Systems and Technology Management, 14(1), 21–38.
Lai, P. C., & Liew, E. J. Y. (2021). Towards a cashless society: The effects of perceived convenience and security on gamified mobile payment platform adoption. Australasian Journal of Information Systems, 25.
Li, Y., & Yu, W. (2011). Online consumers’ perceived security and its influence on their purchase intention. Proceedings of the 7th International Conference on Management of e-Commerce and e-Government (ICMeCG), 1–4.
Lioutas, E. D., & Charatsari, C. (2020). Smart farming and short food supply chains: Framing farmers’ responses to digital agriculture. NJAS - Wageningen Journal of Life Sciences, 90–91, 100307.
Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–385.
Maroufkhani, P., Ismail, W. K. W., & Ghobakhloo, M. (2022). Big data analytics adoption model for small and medium enterprises. Journal of Small Business Management, 60(2), 447–472.
Mirzaee, S., Kiamanesh, A., Hejazi, E., & Banijamali, S. (2016). The effect of perceived competence on academic resiliency with mediation of autonomous motivation. Psychological Models and Methods, 7(25), 67–82.
Murniati, R., Hartono, E., & Widiantoro, D. H. (2020). The impact of self-efficacy and perceived competence on technology acceptance model in e-learning context. IOP Conference Series: Materials Science and Engineering, 722, 012040. https://doi.org/10.1088/1757-899X/722/1/012040.
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404–414.
Park, D. E., & Park, S.-E. (2021). Factors affecting perceived safety and enjoyment based on driver experience. Transportation Research Part F: Traffic Psychology and Behaviour, 83, 148–163.
Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what's being reported? Critique and recommendations. Research in Nursing & Health, 29(5), 489–497.
Rejeb, A., Rejeb, K., Keogh, J. G., & Treiblmaier, H. (2022). The interplay between the Internet of Things and agriculture: A systematic review. Internet of Things, 19, 100536.
Sasse, M. A., & Smith, M. (2016). The security–usability tradeoff myth / Debunking security–usability tradeoff myths. IEEE Security & Privacy.
Schumacker, R. E., & Lomax, R. G. (2016). A beginner’s guide to structural equation modeling. (4th ed.). New York: Routledge.
Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform. International Journal of Data and Network Science, 6(4), 861–874.
Sneineh, A. A., & Shabaneh, A. A. (2023). Design of a smart hydroponics monitoring system using an ESP32 microcontroller and the Internet of Things. MethodsX, 11, 102394.
Stanton, B., et al. (2016). Security fatigue. NIST/IEEE Security & Privacy.
Tan, C.-W., Liu, A., & Benbasat, I. (2017). The art of appeal in electronic commerce: Understanding the impact of web aesthetics on consumers. MIS Quarterly, 41(2), 465–488.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176.
Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645–1653.
Tsouros, D. C., Bibi, S., & Sarigiannidis, P. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695–704. https://doi.org/10.2307/25148660.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). MIS Quarterly, 36(1), 157–178.
Yan, Q., Fan, W., Shao, F., & Lei, Y. (2022). Understanding user acceptance of smart home technologies: A study based on extended TAM and perceived control. Journal of Ambient Intelligence and Humanized Computing, 13(4), 1901–1914.
Yuan, S., Ma, W., Kanthawala, S., & Peng, W. (2015). Keep using my health apps: Discover users’ perception of health and fitness apps with the UTAUT2 model. Telemedicine and e-Health, 21(9), 735–744.
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means–end model and synthesis of evidence. Journal of Marketing, 52(3), 2–22.
Zhang, Y., Wang, G., & Liu, J. (2022). Applications of drones in precision agriculture: A review. Computers and Electronics in Agriculture, 199, 107134. https://doi.org/10.1016/j.compag.2022.107134.
Zhang, Y., Yang, L., Liu, Y., & Wang, J. (2022). Applications and challenges of IoT in smart agriculture: A review. IEEE Internet of Things Journal, 9(4), 2913–2930.
Zimmerman, J. (2012). Using the S-O-R model to understand the impact of website attributes on the online shopping experience. Master’s thesis University of North Texas.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Statistics and Information Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลที่ปรากฏในบทความที่ตีพิมพ์ในวารสารสถิติประยุกต์และเทคโนโลยีสารสนเทศถือเป็นความคิดเห็นส่วนบุคคลของผู้เขียนแต่ละท่าน ความผิดพลาดของข้อความและผลที่อาจเกิดจากนำข้อความเหล่านั้นไปใช้ผู้เขียนบทความจะเป็นผู้รับผิดชอบแต่เพียงผู้เดียว บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารถือเป็นลิขสิทธิ์ของวารสาร หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสาร ก่อนเท่านั้น