ถ่านกัมมันต์ประสิทธิภาพสูงจากน้ำยางดำ

ผู้แต่ง

  • Sutathip Siripanee นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Pornnapa Kasemsiri ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Khanita Kamwilaisak ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Khwantri Saengprachatanarug ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมเกษตร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

คำสำคัญ:

ถ่านกัมมันต์, ลิกนิน, น้ำยางดำ, เมธีลีนบลู

บทคัดย่อ

น้ำยางดำเป็นผลพลอยได้จากกระบวนการผลิตกระดาษที่มีลิกนินเป็นองค์ประกอบหลักซึ่งสามารถนำมาใช้เป็นแหล่งเชื้อเพลิงและเป็นวัตถุดิบสำหรับการผลิตเป็นถ่านกัมมันต์ ในงานวิจัยนี้ได้ศึกษาวิธีการเตรียมถ่านกัมมันต์จากลิกนินโดยวิธีการกระตุ้นทางเคมีด้วยกรดฟอสฟอริก กระบวนการเตรียมถ่านกัมมันต์จะใช้การกระตุ้นก่อนกระบวนการคาร์บอไนซ์ โดยปัจจัยในการศึกษาคือ ความเข้มข้นของกรดฟอสฟอริก 0-30%โดยปริมาตร เวลาในการกระตุ้น 0-12 ชั่วโมง และอุณหภูมิคาร์บอไนซ์ 400-500oC โดยมีการตรวจสอบหาคุณสมบัติของลิกนินและถ่านกัมมันต์ที่เตรียมได้ ร่วมถึงการทดสอบความสามารถในการเป็นตัวดูดซับสีเมธิลีนบลู พบว่าที่สภาวะความเข้มข้นของกรดฟอสฟอริก 30%โดยปริมาตร ที่เวลาในการกระตุ้น 8 ชั่วโมง อุณหภูมิคาร์บอไนซ์ 500oC เป็นสภาวะการเตรียมถ่านกัมมันต์ให้พื้นที่ผิวสูงสุดที่ 806 m2/g ขนาดรูพรุนเฉลี่ย 2.02 นาโนเมตร ปริมาตรรูพรุนเฉลี่ย 0.41 cm³/g เป็นรูพรุนผสม microporous และ mesoporous และผลการทดสอบประสิทธิภาพการดูดซับเมธิลีนบลู ที่ความเข้มข้น 20-100ppm ของถ่านกัมมันต์ พบว่าสามารถดูดซับได้สูงสุดถึง 100% ภายในเวลา 2 ชั่วโมง ที่ความเข้มข้น 20ppm นอกจากนี้ได้เปรียบเทียบวิธีการเตรียมถ่านกัมมันต์จากลิกนินกับงานวิจัยอื่นๆ พบว่าวิธีการกระตุ้นก่อนคาร์บอไนซ์ให้พื้นที่ผิวและประสิทธิภาพการดูดซับสูง

เอกสารอ้างอิง

1. Suhas, Carrott PJM, Ribeiro Carrott MML. Lignin-from natural adsorbent to activated carbon: A review. Bioresource Technology. 2007; 98(12): 2301-2312.

2. Jutakridsada P, Prajaksud C, Kuboonya-Aruk L, Theerakulpisut S, Kamwilaisak K. Adsorption characteristics of activated carbon prepared from spent ground coffee. Clean Technologies and Environmental Policy. 2016; 18(3): 639-645.

3. Mussatto SI, Fernandes M, Rocha GJM, Órfão JJM, Teixeira JA, Roberto IC. Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology. 2010; 101(7): 2450-2457.

4. Gao Y, Yue Q, Gao B, Sun Y, Wang W, Li Q, et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chemical Engineering Journal. 2013; 217: 345-353.

5. Hayashi Ji, Kazehaya A, Muroyama K, Watkinson AP. Preparation of activated carbon from lignin by chemical activation. Carbon. 2000; 38(13): 1873-1878.

6. Fu K, Yue Q, Gao B, Sun Y, Zhu L. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chemical Engineering Journal. 2013; 228: 1074-1082.

7. Youme P. Preparation of Activated Carbons with High Surface Area from Wood Charcoal Powder by Dry Chemical Activation. KKU SCIENCE JOURNAL. 2015; 43(4): 788-798.

8. Chu G, Zhao J, Huang Y, Liu Y, Wu M, Peng H, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environmental Pollution. 2018; 240: 1-9.

9. Zhu G-z, Deng X-l, Hou M, Sun K, Zhang Y-p, Li P, et al. Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Processing Technology. 2016; 144: 255-261.

10. Zou Y, Han B-X. Preparation of Activated Carbons from Chinese Coal and Hydrolysis Lignin. Adsorption Science & Technology. 2001; 19(1): 59-72.

11. Le Van K, Luong Thi TT. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International. 2014; 24(3): 191-198.

12. Tang Y-b, Liu Q, Chen F-y. Preparation and characterization of activated carbon from waste ramulus mori. Chemical Engineering Journal. 2012; 203: 19-24.

13. Yakout SM, Sharaf El-Deen G. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry. 2016; 9: S1155-S1162.

14. Chandra TC, Mirna MM, Sunarso J, Sudaryanto Y, Ismadji S. Activated carbon from durian shell: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineers. 2009; 40(4): 457-462.

15. Ngernyen Y, Kamwilaisak K. Activated carbon from Thailand’s biomass: A review literature. Engineering and Applied Science Research. 2013;40(2): 267-283.

16. Zhang Jp, Sun Y, Woo MW, Zhang L, Xu KZ. Preparation of steam activated carbon from black liquor by flue gas precipitation and its performance in hydrogen sulfide removal: Experimental and simulation works. Journal of the Taiwan Institute of Chemical Engineers. 2016; 59: 395-404.

17. Fierro V, Torné-Fernández V, Celzard A. Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: Synthesis and textural characterisation. Microporous and Mesoporous Materials. 2006; 92(1): 243-250.

18. Sych NV, Trofymenko SI, Poddubnaya OI, Tsyba MM, Sapsay VI, Klymchuk DO, et al. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Applied Surface Science. 2012; 261: 75-82.

19. Kumar A, Jena HM. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics. 2016; 6: 651-658.

20. Dong Z, Wang H, Tian S, Yang Y, Yuan H, Huang Q, et al. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresource Technology. 2018; 269: 203-209.

21. Zhang G, Yinghui S, Ying X, Riguang Z. Catalytic performance of N-doped activated carbon supported cobalt catalyst for carbon dioxide reforming of methane to synthesis gas. Journal of the Taiwan Institute of Chemical Engineers. 2018; 20: 1-11.

22. Wang J, Jin L, Li Y, Jia C, Hu H. Effect of air pre-oxidization on coal-based activated carbon for methane decomposition to hydrogen. International Journal of Hydrogen Energy. 2016. 41(25): 10661-10669.

23. Hidayu A.R, Muda N. Preparation and Characterization of Impregnated Activated Carbon from Palm Kernel Shell and Coconut Shell for CO2 Capture. Procedia Engineering. 2016. 148: 106-113.

24. Zhao J, Xiuwen W, Hu J, Liu Q, Shen D, Xiao R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polymer Degradation and Stability. 2014; 108: 133-138.

25. Wang W, Tan X, Yu Q, Wang Q, Qi W, Zhuang X, et al. Effect of stepwise lignin removal on the enzymatic hydrolysis and cellulase adsorption. Industrial Crops and Products. 2018; 122: 16-22.

26. Li J, Li B, Zhang X. Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polymer Degradation and Stability. 2002; 78(2): 279-285.

27. Zhang H, Wu S, Xie J. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme and Microbial Technology. 2017; 101: 44-50.

28. Huang Y, Liu H, Yuan H, Zhan H, Zhuang X, Yuan S, et al. Relevance between chemical structure and pyrolysis behavior of palm kernel shell lignin. Science of The Total Environment. 2018; 633: 785-795.

29. Asoka Panamgama L, Peramune PRUSK. Coconut coir pith lignin: A physicochemical and thermal characterization. International Journal of Biological Macromolecules. 2018; 113: 1149-1157.

30. Rosas JM, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T. Kinetic study of SO2 removal over lignin-based activated carbon. Chemical Engineering Journal. 2017; 307: 707-721.

31. Gustafsson Å, Hale S, Cornelissen G, Sjöholm E, Gunnarsson JS. Activated carbon from kraft lignin: A sorbent for in situ remediation of contaminated sediments. Environmental Technology & Innovation. 2017; 7: 160-168.

32. Yu B, Chang Z, Wang C. The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors. Materials Chemistry and Physics. 2016; 181: 187-193.

33. Tsubouchi N, Nishio M, Mochizuki Y. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin. Applied Surface Science. 2016; 371: 301-306.

34. Guo Y, Rockstraw DA. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon. 2006; 44(8): 1464-1475.

35. Pisuttangkul S. Preparation of activated carbon from lignin by chemical activation for methylene blue adsorption [B.Eng.thesis]. Khon Kaen: Khon Kaen University; 2014. Thai.

36. Rodríguez Correa C, Stollovsky M, Hehr T, Rauscher Y, Rolli B, Kruse A. Influence of the Carbonization Process on Activated Carbon Properties from Lignin and Lignin-Rich Biomasses. ACS Sustainable Chemistry & Engineering. 2017; 5(9): 8222-8233.

ดาวน์โหลด

เผยแพร่แล้ว

2019-08-09

ฉบับ

ประเภทบทความ

บทความวิจัย